Back to Search Start Over

A Novel Method for Object Detection using Deep Learning and CAD Models

Authors :
Ballhausen Sampaio, Igor Garcia
Machaca, Luigy
Viterbo, Jose
Guérin, Joris
Universidade Federal Fluminense [Rio de Janeiro] (UFF)
ONERA
Équipe Tolérance aux fautes et Sûreté de Fonctionnement informatique (LAAS-TSF)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019)
Guerin, Joris
Artificial and Natural Intelligence Toulouse Institute - - ANITI2019 - ANR-19-P3IA-0004 - P3IA - VALID
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Source :
23rd International Conference on Enterprise Information Systems (ICEIS2021), 23rd International Conference on Enterprise Information Systems (ICEIS2021), Apr 2021, Online, Portugal
Publication Year :
2021

Abstract

Object Detection (OD) is an important computer vision problem for industry, which can be used for quality control in the production lines, among other applications. Recently, Deep Learning (DL) methods have enabled practitioners to train OD models performing well on complex real world images. However, the adoption of these models in industry is still limited by the difficulty and the significant cost of collecting high quality training datasets. On the other hand, when applying OD to the context of production lines, CAD models of the objects to be detected are often available. In this paper, we introduce a fully automated method that uses a CAD model of an object and returns a fully trained OD model for detecting this object. To do this, we created a Blender script that generates realistic labeled datasets of images containing the object, which are then used for training the OD model. The method is validated experimentally on two practical examples, showing that this approach can generate OD models performing well on real images, while being trained only on synthetic images. The proposed method has potential to facilitate the adoption of object detection models in industry as it is easy to adapt for new objects and highly flexible. Hence, it can result in significant costs reduction, gains in productivity and improved products quality.<br />Comment: 8 pages, 4 figures, 2 tables, To appear in the proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021)

Details

Language :
English
Database :
OpenAIRE
Journal :
23rd International Conference on Enterprise Information Systems (ICEIS2021), 23rd International Conference on Enterprise Information Systems (ICEIS2021), Apr 2021, Online, Portugal
Accession number :
edsair.doi.dedup.....929516d1e2e324ce4c6773cded3641d2