Back to Search Start Over

Gravitational wave signatures of black hole quasi-normal mode instability

Authors :
Lamis Al Sheikh
Rodrigo Panosso Macedo
Jose-Luis Jaramillo
Institut de Mathématiques de Bourgogne [Dijon] (IMB)
Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
School of Mathematical Sciences [Queen Mary]
University of London [London]
Departamento de Fìsica [Lisboa] (DF)
Faculdade de Ciências e Tecnologia = School of Science & Technology (FCT NOVA)
Universidade Nova de Lisboa = NOVA University Lisbon (NOVA)-Universidade Nova de Lisboa = NOVA University Lisbon (NOVA)
Institut de Mathématiques de Marseille (I2M)
Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
French National Research Agency (ANR)ANR-15-IDEX-03ANR-20-CE40-0018-02European Research Council (ERC)European CommissionERC-2014-StG 639022-NewNGRUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)ST/V000551/1European Commission Marie Sklodowska-Curie Grant843152EIPHI Graduate SchoolANR-17-EURE-0002Spanish GovernmentFIS2017-86497-C2-1
ANR-20-CE40-0018,QFG,Champs quantiques en interaction avec la géométrie(2020)
ANR-17-EURE-0002,EIPHI,Ingénierie et Innovation par les sciences physiques, les savoir-faire technologiques et l'interdisciplinarité(2017)
ANR-15-IDEX-0003,BFC,ISITE ' BFC(2015)
Université de Bourgogne (UB)
Source :
Phys.Rev.Lett., Phys.Rev.Lett., 2022, 128 (21), pp.211102. ⟨10.1103/PhysRevLett.128.211102⟩
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

Black hole (BH) spectroscopy has emerged as a powerful approach to extract spacetime information from gravitational wave (GW) observed signals. Yet, quasinormal mode (QNM) spectral instability under high wave-number perturbations has been recently shown to be a common classical general relativistic phenomenon [1]. This requires to assess its impact on the BH QNM spectrum, in particular on BH QNM overtone frequencies. We conclude: i) perturbed BH QNM overtones are indeed potentially observable in the GW waveform, providing information on small-scale environment BH physics, and ii) their detection poses a challenging data analysis problem of singular interest for LISA astrophysics. We adopt a two-fold approach, combining theoretical results from scattering theory with a fine-tuned data analysis on a highly-accurate numerical GW ringdown signal. The former introduces a set of effective parameters (partially lying on a BH Weyl law) to characterise QNM instability physics. The latter provides a proof-of-principle demonstrating that the QNM spectral instability is indeed accessible in the time-domain GW waveform, though certainly requiring large signal-to-noise ratios. Particular attention is devoted to discuss the patterns of isospectrality loss under QNM instability, since the disentanglement between axial and polar GW parities may already occur within the near-future detection range.<br />Comment: 4 pages, 3 figures, 1 table + Supplemental Material (3 additional figures)

Details

Database :
OpenAIRE
Journal :
Phys.Rev.Lett., Phys.Rev.Lett., 2022, 128 (21), pp.211102. ⟨10.1103/PhysRevLett.128.211102⟩
Accession number :
edsair.doi.dedup.....928eef348e98aa175481c60c3e92e6c0
Full Text :
https://doi.org/10.48550/arxiv.2105.03451