Back to Search Start Over

Integrating Acting, Planning, and Learning in Hierarchical Operational Models

Authors :
Patra, Sunandita
Mason, James
Kumar, Amit
Ghallab, Malik
Traverso, Paolo
Nau, Dana
University of Maryland [College Park]
University of Maryland System
Équipe Robotique et InteractionS (LAAS-RIS)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Fondazione Bruno Kessler [Trento, Italy] (FBK)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Ghallab, Malik
Source :
International Conference on Automated Planning and Scheduling (ICAPS), International Conference on Automated Planning and Scheduling (ICAPS), Oct 2020, Nancy (on line), France
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

We present new planning and learning algorithms for RAE, the Refinement Acting Engine. RAE uses hierarchical operational models to perform tasks in dynamically changing environments. Our planning procedure, UPOM, does a UCT-like search in the space of operational models in order to find a near-optimal method to use for the task and context at hand. Our learning strategies acquire, from online acting experiences and/or simulated planning results, a mapping from decision contexts to method instances as well as a heuristic function to guide UPOM. Our experimental results show that UPOM and our learning strategies significantly improve RAE's performance in four test domains using two different metrics: efficiency and success ratio.<br />Accepted in ICAPS 2020 (30th International Conference on Automated Planning and Scheduling)

Details

Language :
English
Database :
OpenAIRE
Journal :
International Conference on Automated Planning and Scheduling (ICAPS), International Conference on Automated Planning and Scheduling (ICAPS), Oct 2020, Nancy (on line), France
Accession number :
edsair.doi.dedup.....928dd7721362906ec97b254078d2b3e6