Back to Search
Start Over
Desktop Fabrication of Lab-On-Chip Devices on Flexible Substrates: A Brief Review
- Source :
- Micromachines, Vol 11, Iss 2, p 126 (2020), Micromachines
- Publication Year :
- 2020
- Publisher :
- MDPI AG, 2020.
-
Abstract
- Flexible microfluidic devices are currently in demand because they can be mass-produced in resource-limited settings using simple and inexpensive fabrication tools. Finding new ways to fabricate microfluidic platforms on flexible substrates has been a hot area. Integration of customized detection tools for different lab-on-chip applications has made this area challenging. Significant advancements have occurred in the area over the last decade; therefore, there is a need to review such interesting fabrication tools employed on flexible substrates, such as paper and plastics. In this short review, we review individual fabrication tools and their combinations that have been used to develop such platforms in the past five years. These tools are not only simple and low-cost but also require minimal skills for their operation. Moreover, key examples of plastic-based flexible substrates are also presented, because a diverse range of plastic materials have prevailed recently for a variety of lab-on-chip applications. This review should attract audience of various levels, i.e., from hobbyists to scientists, and from high school students to postdoctoral researchers, to produce their own flexible devices in their own settings.
- Subjects :
- Fabrication
Computer science
Mechanical Engineering
flexible devices
lcsh:Mechanical engineering and machinery
010401 analytical chemistry
Plastic materials
microfluidics
02 engineering and technology
Review
Lab-on-a-chip
021001 nanoscience & nanotechnology
biosensors
01 natural sciences
0104 chemical sciences
law.invention
lab-on-chip
Control and Systems Engineering
law
desktop fabrication
Systems engineering
lcsh:TJ1-1570
Electrical and Electronic Engineering
0210 nano-technology
Subjects
Details
- Language :
- English
- Volume :
- 11
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Micromachines
- Accession number :
- edsair.doi.dedup.....928b5777a9315f8876d645fd728025c5