Back to Search Start Over

Experimental Investigation of Dental Composites Degradation After Early Water Exposure

Authors :
Rémy Gauthier
Hazem Abouelleil
Yoan Boussès
Nathalie Brulat-Bouchard
Pierre Colon
Jean-Marc Chenal
Yannick Tillier
Brigitte Grosgogeat
Source :
Journal of biomechanical engineering. 145(5)
Publication Year :
2022

Abstract

While dental composite long-term aging has already been studied in the past, no data exist about the early aging while it might be detrimental regarding the composites' longevity. This study aims to better understand the effects of early water exposure on dental composites. Dental resin composites with different fillers ratio were subjected to water exposure during 24 h, 1 week, or 1 month. After photopolymerization, the samples were stored at different conditions, whether in wet or dry condition (W, D, respectively) and in wet conditions after a first 24 h storage in dry conditions (DW). Three-point bending tests were performed to measure the flexural modulus. The samples were then subjected to a sorption/desorption protocol. While the matrix alone did not undergo any mechanical degradation with exposure time, the composites matrices presented a decrease in elastic modulus. This decrease was the highest for the matrix with nonsilanized fillers. Interestingly, the DW condition was detrimental for all the samples. Regarding the sample with nonsilanized fillers in DW for 1 month presented an elastic modulus lower than the matrix alone. These results were assigned to the sorption capacity of the polymer matrix, suggesting that the diffusion mechanisms and the nature of water molecules are determinant in the composite degradation. This study showed that dental composite early degradation mechanisms after water exposure are involved in the polymer matrix postpolymerization process as soon as after 24 h. Such mechanisms are detrimental in terms of the dental composite efficiency and have to be understood.

Details

ISSN :
15288951
Volume :
145
Issue :
5
Database :
OpenAIRE
Journal :
Journal of biomechanical engineering
Accession number :
edsair.doi.dedup.....927b98d01b3d916599ede5b92c62510c