Back to Search Start Over

The Temporal Dynamics of Background Selection in Nonequilibrium Populations

Authors :
Ryan D. Hernandez
Markus G Stetter
Raul Torres
Jeffrey Ross-Ibarra
Source :
Genetics, Genetics, vol 214, iss 4
Publication Year :
2020
Publisher :
Oxford University Press (OUP), 2020.

Abstract

Neutral genetic diversity across the genome is determined by the complex interplay of mutation, demographic history, and natural selection. While the direct action of natural selection is limited to functional loci across the genome, its impact can have effects on nearby neutral loci due to genetic linkage. These effects of selection at linked sites, referred to as genetic hitchhiking and background selection (BGS), are pervasive across natural populations. However, only recently has there been a focus on the joint consequences of demography and selection at linked sites, and some empirical studies have come to apparently contradictory conclusions as to their combined effects. To understand the relationship between demography and selection at linked sites, we conducted an extensive forward simulation study of BGS under a range of demographic models. We found that the relative levels of diversity in BGS and neutral regions vary over time and that the initial dynamics after a population size change are often in the opposite direction of the long-term expected trajectory. Our detailed observations of the temporal dynamics of neutral diversity in the context of selection at linked sites in nonequilibrium populations provide new intuition about why patterns of diversity under BGS vary through time in natural populations and help reconcile previously contradictory observations. Most notably, our results highlight that classical models of BGS are poorly suited for predicting diversity in nonequilibrium populations.

Details

ISSN :
19432631
Volume :
214
Database :
OpenAIRE
Journal :
Genetics
Accession number :
edsair.doi.dedup.....926147a39c1c33f50121a75f9b614fbe