Back to Search
Start Over
Time-dependent inclusions and sweeping processes in contact mechanics
- Source :
- Zeitschrift für Angewandte Mathematik und Physik, Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 2019, 70 (2), ⟨10.1007/s00033-019-1084-4⟩, Zeitschrift für angewandte Mathematik und Physik
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- We consider a class of time-dependent inclusions in Hilbert spaces for which we state and prove an existence and uniqueness result. The proof is based on arguments of variational inequalities, convex analysis and fixed point theory. Then we use this result to prove the unique weak solvability of a new class of Moreau's sweeping processes with constraints in velocity. Our results are useful in the study of mathematical models which describe the quasistatic evolution of deformable bodies in contact with an obstacle. To provide some examples we consider three viscoelastic contact problems which lead to time-dependent inclusions and sweeping processes in which the unknowns are the displacement and the velocity fields, respectively. Then we apply our abstract results in order to prove the unique weak solvability of the corresponding contact problems.
- Subjects :
- Convex analysis
49J40, 47J20, 47J22, 34G25, 58E35, 74M10, 74M15, 74G25
Mathematical model
Applied Mathematics
General Mathematics
010102 general mathematics
Mathematical analysis
Hilbert space
General Physics and Astronomy
Fixed-point theorem
FOS: Physical sciences
Mathematical Physics (math-ph)
01 natural sciences
Displacement (vector)
010101 applied mathematics
symbols.namesake
Contact mechanics
Variational inequality
symbols
Uniqueness
0101 mathematics
[MATH]Mathematics [math]
Mathematical Physics
ComputingMilieux_MISCELLANEOUS
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 00442275 and 14209039
- Database :
- OpenAIRE
- Journal :
- Zeitschrift für Angewandte Mathematik und Physik, Zeitschrift für Angewandte Mathematik und Physik, Springer Verlag, 2019, 70 (2), ⟨10.1007/s00033-019-1084-4⟩, Zeitschrift für angewandte Mathematik und Physik
- Accession number :
- edsair.doi.dedup.....924c9c9fc70f2c581de8931d7e6174d1
- Full Text :
- https://doi.org/10.1007/s00033-019-1084-4⟩