Back to Search Start Over

Toxicity of peroxisomal C27-bile acid intermediates

Authors :
Ronald J.A. Wanders
Simone Denis
Georges Dacremont
Sacha Ferdinandusse
AGEM - Amsterdam Gastroenterology Endocrinology Metabolism
Laboratory Genetic Metabolic Diseases
Source :
Molecular genetics and metabolism, 96(3), 121-128. Academic Press Inc.
Publication Year :
2009

Abstract

Peroxisomes play an important role in bile acid biosynthesis because the last steps of the synthesis pathway are performed by the beta-oxidation system located inside peroxisomes. As a consequence, C(27)-bile acid intermediates accumulate in several peroxisomal disorders. It has been suggested that C(27)-bile acids are especially toxic and contribute to the liver disease associated with peroxisomal disorders. For this reason, we investigated the toxicity of C(27)-bile acids and the underlying mechanisms. We studied the effects of conjugated and unconjugated C(27)-bile acids on cell viability, mitochondrial respiratory chain function and production of oxygen radicals in the rat hepatoma cell line McA-RH7777. Cell viability decreased progressively after incubation with increasing concentrations of different bile acids with dihydroxycholestanoic acid (DHCA) being clearly the most cytotoxic bile acid. In addition, the different bile acids caused a dose-dependent decrease in ATP synthesis by isolated mitochondria oxidizing malate and glutamate. Finally, there was a dose-dependent stimulation of ROS generation in the presence of C(27)-bile acids. In conclusion, our studies showed that C(27)-bile acids are more cytotoxic than mature C(24)-bile acids. In addition, C(27)-bile acids are potent inhibitors of oxidative phosphorylation and enhance mitochondrial ROS production by inhibiting the respiratory chain.

Details

Language :
English
ISSN :
10967192
Volume :
96
Issue :
3
Database :
OpenAIRE
Journal :
Molecular genetics and metabolism
Accession number :
edsair.doi.dedup.....92479cfeba7ca076dae5035e1c9a1cc8
Full Text :
https://doi.org/10.1016/j.ymgme.2008.11.165