Back to Search Start Over

Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models

Authors :
Peter S. Thorne
Andrea Adamcakova-Dodd
Sabine U. Vorrink
Patrick T. O'Shaughnessy
Andrew P. Ault
Vicki H. Grassian
Larissa V. Stebounova
Jong Sung Kim
Source :
Particle and Fibre Toxicology, Particle and fibre toxicology, vol 11, iss 1
Publication Year :
2014
Publisher :
BioMed Central, 2014.

Abstract

Background: Although ZnO nanoparticles (NPs) are used in many commercial products and the potential for human exposure is increasing, few in vivo studies have addressed their possible toxic effects after inhalation. We sought to determine whether ZnO NPs induce pulmonary toxicity in mice following sub-acute or sub-chronic inhalation exposure to realistic exposure doses. Methods: Mice (C57Bl/6) were exposed to well-characterized ZnO NPs (3.5 mg/m 3 , 4 hr/day) for 2 (sub-acute) or 13 (sub-chronic) weeks and necropsied immediately (0 wk) or 3 weeks (3 wks) post exposure. Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid as well as measurements of pulmonary mechanics. Generation of reactive oxygen species was assessed in the lungs. Lungs were evaluated for histopathologic changes and Zn content. Zn concentration in blood, liver, kidney, spleen, heart, brain and BAL fluid was measured. Results: An elevated concentration of Zn 2+ was detected in BAL fluid immediately after exposures, but returned to baseline levels 3 wks post exposure. Dissolution studies showed that ZnO NPs readily dissolved in artificial lysosomal fluid (pH 4.5), but formed aggregates and precipitates in artificial interstitial fluid (pH 7.4). Sub-acute exposure to ZnO NPs caused an increase of macrophages in BAL fluid and a moderate increase in IL-12(p40) and MIP-1α, but no other inflammatory or toxic responses were observed. Following both sub-acute and sub-chronic exposures, pulmonary mechanics were no different than sham-exposed animals. Conclusions: Our ZnO NP inhalation studies showed minimal pulmonary inflammation, cytotoxicity or lung histopathologic changes. An elevated concentration of Zn in the lung and BAL fluid indicates dissolution of ZnO NPs in the respiratory system after inhalation. Exposure concentration, exposure mode and time post exposure played an important role in the toxicity of ZnO NPs. Exposure for 13 wks with a cumulative dose of 10.9 mg/kg yielded increased lung cellularity, but other markers of toxicity did not differ from sham-exposed animals, leading to the conclusion that ZnO NPs have low sub-chronic toxicity by the inhalation route.

Details

Language :
English
ISSN :
17438977
Volume :
11
Database :
OpenAIRE
Journal :
Particle and Fibre Toxicology
Accession number :
edsair.doi.dedup.....91f1e7f33ee2ff27809e7f177b1dc307