Back to Search Start Over

Paramutation-like interaction of T-DNA loci in Arabidopsis

Authors :
Totte Niittylä
Colin Ruprecht
Christine Chang
Kian Hématy
Weiya Xue
Wolf B. Frommer
Staffan Persson
Nathaniel R. Street
Dept Forest Genet & Plant Physiol, Umea Plant Sci Ctr
Swedish University of Agricultural Sciences (SLU)
Max Planck Institute of Molecular Plant Physiology (MPI-MP)
Max-Planck-Gesellschaft
Dept Plant Physiol, Umea Plant Sci Ctr
Umeå University
Institut Jean-Pierre Bourgin (IJPB)
Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Department of Plant Biology [Carnegie Institution]
Carnegie Institution for Science [Washington]
Swedish research agency FORMAS
Human Frontier Science Program and Bio4Energy
Swedish Programme for renewable energy
Umea Plant Science Center (UPSC)
Department of Forest Genetics and Plant Physiology
Swedish University of Agricultural Sciences (SLU)-Swedish University of Agricultural Sciences (SLU)
Department of Plant Biology [Carnegie] (DPB)
Source :
PLoS ONE, Vol 7, Iss 12, p e51651 (2012), PLoS ONE, PLoS ONE, Public Library of Science, 2012, 7 (12), ⟨10.1371/journal.pone.0051651⟩, PLoS One, Plos One 12 (7), . (2012)
Publication Year :
2012
Publisher :
Public Library of Science (PLoS), 2012.

Abstract

In paramutation, epigenetic information is transferred from one allele to another to create a gene expression state which is stably inherited over generations. Typically, paramutation describes a phenomenon where one allele of a gene down-regulates the expression of another allele. Paramutation has been described in several eukaryotes and is best understood in plants. Here we describe an unexpected paramutation-like trans SALK T-DNA interaction in Arabidopsis. Unlike most of the previously described paramutations, which led to gene silencing, the trans SALK T-DNA interaction caused an increase in the transcript levels of the endogenous gene (COBRA) where the T-DNA was inserted. This increased COBRA expression state was stably inherited for several generations and led to the partial suppression of the cobra phenotype. DNA methylation was implicated in this trans SALK T-DNA interaction since mutation of the DNA methyltransferase 1 in the suppressed cobra caused a reversal of the suppression. In addition, null mutants of the DNA demethylase ROS1 caused a similar COBRA transcript increase in the cobra SALK T-DNA mutant as the trans T-DNA interaction. Our results provide a new example of a paramutation-like trans T-DNA interaction in Arabidopsis, and establish a convenient hypocotyl elongation assay to study this phenomenon. The results also alert to the possibility of unexpected endogenous transcript increase when two T-DNAs are combined in the same genetic background. Citation: Xue W, Ruprecht C, Street N, Hematy K, Chang C, et al. (2012) Paramutation-Like Interaction of T-DNA Loci in Arabidopsis. PLoS ONE 7(12): e51651. doi:10.1371/journal.pone.0051651

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
12
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....91d313d229f44b584d20dc280a658c31