Back to Search Start Over

Speckle Reduction in Matrix-Log Domain for Synthetic Aperture Radar Imaging

Authors :
Charles-Alban Deledalle
Loïc Denis
Florence Tupin
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Hubert Curien [Saint Etienne] (LHC)
Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-Institut d'Optique Graduate School (IOGS)
Institut Polytechnique de Paris (IP Paris)
Département Images, Données, Signal (IDS)
Télécom ParisTech
Image, Modélisation, Analyse, GEométrie, Synthèse (IMAGES)
Laboratoire Traitement et Communication de l'Information (LTCI)
Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
Source :
Journal of Mathematical Imaging and Vision. 64:298-320
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

Synthetic aperture radar (SAR) images are widely used for Earth observation to complement optical imaging. By combining information on the polarization and the phase shift of the radar echos, SAR images offer high sensitivity to the geometry and materials that compose a scene. This information richness comes with a drawback inherent to all coherent imaging modalities: a strong signal-dependent noise called "speckle". This paper addresses the mathematical issues of performing speckle reduction in a transformed domain: the matrix-log domain. Rather than directly estimating noiseless covariance matrices, recasting the denoising problem in terms of the matrix-log of the covariance matrices stabilizes noise fluctuations and makes it possible to apply off-the-shelf denoising algorithms. We refine the method MuLoG by replacing heuristic procedures with exact expressions and improving the estimation strategy. This corrects a bias of the original method and should facilitate and encourage the adaptation of general-purpose processing methods to SAR imaging.

Details

ISSN :
15737683 and 09249907
Volume :
64
Database :
OpenAIRE
Journal :
Journal of Mathematical Imaging and Vision
Accession number :
edsair.doi.dedup.....91bfb551af2196a59093fb1facec1fbe