Back to Search Start Over

Managing Hydrogen Bonding in Clathrate Hydrates by Crystal Engineering

Authors :
Christopher I. Ratcliffe
Kyuchul Shin
John A. Ripmeester
Igor L. Moudrakovski
Source :
Angewandte Chemie International Edition. 56:6171-6175
Publication Year :
2017
Publisher :
Wiley, 2017.

Abstract

Methanol is one of the most common inhibitors for clathrate hydrate formation. Crystalline clathrate hydrates containing methanol were synthesized and analyzed by powder X‐ray diffraction and 13C NMR spectroscopy. The data obtained demonstrate that methanol can be a helper guest for forming structure I, structure II, and structure H clathrate hydrates, as long as the lattice framework contains NH4F. The latter acts as a lattice stabilizer by providing sites for strong hydrogen bonding of the normally disruptive methanol hydroxy group. NH4F and methanol can be considered key materials for crystal engineering of clathrate hydrates, as the modified lattices allow preparation of hydrates of non‐traditional water‐soluble guests such as alcohols and diols. Methanol takes on the role of an unconventional helper guest. This extends clathrate chemistry to a realm where neither hydrophobic guests nor high pressures are required. This also suggests that more stable lattices can be engineered for applications such as gas storage.

Details

ISSN :
15213773 and 14337851
Volume :
56
Database :
OpenAIRE
Journal :
Angewandte Chemie International Edition
Accession number :
edsair.doi.dedup.....919d2bfd1c018fe69c769355951f72f7
Full Text :
https://doi.org/10.1002/anie.201700654