Back to Search
Start Over
HARPS-N solar RVs are dominated by large, bright magnetic regions
- Source :
- BASE-Bielefeld Academic Search Engine, Milbourne, T W, Haywood, R D, Phillips, D F, Saar, S H, Cegla, H M, Cameron, A C, Costes, J, Dumusque, X, Langellier, N, Latham, D W, Maldonado, J, Malavolta, L, Mortier, A, Palumbo, M L III, Thompson, S, Watson, C A, Bouchy, F, Buchschacher, N, Cecconi, M, Charbonneau, D, Cosentino, R, Ghedina, A, Glenday, A G, Gonzalez, M, Li, C-H, Lodi, M, López-Morales, M, Lovis, C, Mayor, M, Micela, G, Molinari, E, Pepe, F, Piotto, G, Rice, K, Sasselov, D, Ségransan, D, Sozzetti, A, Szentgyorgyi, A, Udry, S & Walsworth, R L 2019, ' HARPS-N Solar RVs Are Dominated by Large, Bright Magnetic Regions ', The Astrophysical Journal, vol. 874, no. 1 . https://doi.org/10.3847/1538-4357/ab064a
- Publication Year :
- 2019
-
Abstract
- State-of-the-art radial-velocity (RV) exoplanet searches are currently limited by RV signals arising from stellar magnetic activity. We analyze solar observations acquired over a 3 yr period during the decline of Carrington Cycle 24 to test models of RV variation of Sun-like stars. A purpose-built solar telescope at the High Accuracy Radial-velocity Planet Searcher for the Northern hemisphere (HARPS-N) provides disk-integrated solar spectra, from which we extract RVs and {log}{R}HK}{\prime }. The Solar Dynamics Observatory (SDO) provides disk-resolved images of magnetic activity. The Solar Radiation and Climate Experiment (SORCE) provides near-continuous solar photometry, analogous to a Kepler light curve. We verify that the SORCE photometry and HARPS-N {log}{R}HK}{\prime } correlate strongly with the SDO-derived magnetic filling factor, while the HARPS-N RV variations do not. To explain this discrepancy, we test existing models of RV variations. We estimate the contributions of the suppression of convective blueshift and the rotational imbalance due to brightness inhomogeneities to the observed HARPS-N RVs. We investigate the time variation of these contributions over several rotation periods, and how these contributions depend on the area of active regions. We find that magnetic active regions smaller than 60 Mm2 do not significantly suppress convective blueshift. Our area-dependent model reduces the amplitude of activity-induced RV variations by a factor of two. The present study highlights the need to identify a proxy that correlates specifically with large, bright magnetic regions on the surfaces of exoplanet-hosting stars.
- Subjects :
- planets and satellites: detection
010504 meteorology & atmospheric sciences
NDAS
faculae [Sun]
Astrophysics
plages
01 natural sciences
Sun: granulation
Planet
Sun: activity
0103 physical sciences
techniques: radial velocities
Astrophysics::Solar and Stellar Astrophysics
QB Astronomy
activity [Sun]
faculae, plages [Sun]
010303 astronomy & astrophysics
Astrophysics::Galaxy Astrophysics
QC
0105 earth and related environmental sciences
QB
Physics
sunspots
Filling factor
Sunspots
radial velocities [techniques]
Astronomy and Astrophysics
Sun: faculae
Light curve
Exoplanet
Solar telescope
Radial velocity
Stars
Photometry (astronomy)
detection [Planets and satellites]
QC Physics
13. Climate action
Space and Planetary Science
Astrophysics::Earth and Planetary Astrophysics
Sun: faculae, plages
granulation [Sun]
redial velocities [Techniques]
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- BASE-Bielefeld Academic Search Engine, Milbourne, T W, Haywood, R D, Phillips, D F, Saar, S H, Cegla, H M, Cameron, A C, Costes, J, Dumusque, X, Langellier, N, Latham, D W, Maldonado, J, Malavolta, L, Mortier, A, Palumbo, M L III, Thompson, S, Watson, C A, Bouchy, F, Buchschacher, N, Cecconi, M, Charbonneau, D, Cosentino, R, Ghedina, A, Glenday, A G, Gonzalez, M, Li, C-H, Lodi, M, López-Morales, M, Lovis, C, Mayor, M, Micela, G, Molinari, E, Pepe, F, Piotto, G, Rice, K, Sasselov, D, Ségransan, D, Sozzetti, A, Szentgyorgyi, A, Udry, S & Walsworth, R L 2019, ' HARPS-N Solar RVs Are Dominated by Large, Bright Magnetic Regions ', The Astrophysical Journal, vol. 874, no. 1 . https://doi.org/10.3847/1538-4357/ab064a
- Accession number :
- edsair.doi.dedup.....9121ce527c2b3f924dcbafc9c92a0a8d
- Full Text :
- https://doi.org/10.3847/1538-4357/ab064a