Back to Search Start Over

Adenoassociated Virus Serotype 9-Mediated Gene Therapy for X-Linked Adrenoleukodystrophy

Authors :
Ann B. Moser
Florian Eichler
Xandra O. Breakefield
Patricia L. Musolino
Dakai Mu
Casey A. Maguire
Jia Qian Ren
Yi Gong
Shilpa Prabhakar
Source :
Molecular Therapy. 23:824-834
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

X-linked adrenoleukodystrophy (X-ALD) is a devastating neurological disorder caused by mutations in the ABCD1 gene that encodes a peroxisomal ATP-binding cassette transporter (ABCD1) responsible for transport of CoA-activated very long-chain fatty acids (VLCFA) into the peroxisome for degradation. We used recombinant adenoassociated virus serotype 9 (rAAV9) vector for delivery of the human ABCD1 gene (ABCD1) to mouse central nervous system (CNS). In vitro, efficient delivery of ABCD1 gene was achieved in primary mixed brain glial cells from Abcd1-/- mice as well as X-ALD patient fibroblasts. Importantly, human ABCD1 localized to the peroxisome, and AAV-ABCD1 transduction showed a dose-dependent effect in reducing VLCFA. In vivo, AAV9-ABCD1 was delivered to Abcd1-/- mouse CNS by either stereotactic intracerebroventricular (ICV) or intravenous (IV) injections. Astrocytes, microglia and neurons were the major target cell types following ICV injection, while IV injection also delivered to microvascular endothelial cells and oligodendrocytes. IV injection also yielded high transduction of the adrenal gland. Importantly, IV injection of AAV9-ABCD1 reduced VLCFA in mouse brain and spinal cord. We conclude that AAV9-mediated ABCD1 gene transfer is able to reach target cells in the nervous system and adrenal gland as well as reduce VLCFA in culture and a mouse model of X-ALD.

Details

ISSN :
15250016
Volume :
23
Database :
OpenAIRE
Journal :
Molecular Therapy
Accession number :
edsair.doi.dedup.....90f43031b9391d9836eda7c01f8d1a7f