Back to Search Start Over

Boundary-Element-Based Finite Element Methods For Helmholtz And Maxwell Equations On General Polyhedral Meshes

Authors :
Dylan M. Copeland
Publication Year :
2009
Publisher :
Zenodo, 2009.

Abstract

We present new finite element methods for Helmholtz and Maxwell equations on general three-dimensional polyhedral meshes, based on domain decomposition with boundary elements on the surfaces of the polyhedral volume elements. The methods use the lowest-order polynomial spaces and produce sparse, symmetric linear systems despite the use of boundary elements. Moreover, piecewise constant coefficients are admissible. The resulting approximation on the element surfaces can be extended throughout the domain via representation formulas. Numerical experiments confirm that the convergence behavior on tetrahedral meshes is comparable to that of standard finite element methods, and equally good performance is attained on more general meshes.<br />{"references":["R.A. Adams. Sobolev spaces, volume 65 of Pure and Applied Mathematics.\nAcademic Press [a subsidiary of Harcourt Brace Jovanovich\nPublishers], New York-London, 1975.","M. Bebendorf. Approximation of boundary element matrices. Numerische\nMathematik, 86, pp. 565-589, 2000.","F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence of the mimetic\nfinite difference method for diffusion problems on polyhedral meshes.\nSIAM Journal on Numerical Analysis, 43, pp. 1872-1896 (electronic),\n2005.","A. Buffa, and S.H. Christiansen. The electric field integral equation on\nLipschitz screens: definitions and numerical approximation. Numerische\nMathematik, 94, pp. 229-267, 2003.","A. Buffa and P. Ciarlet, Jr. On traces for functional spaces related to\nMaxwell-s equations. I. An integration by parts formula in Lipschitz\npolyhedra. Mathematical Methods in the Applied Sciences, 24, pp. 9-30,\n2001.","A. Buffa and P. Ciarlet, Jr. On traces for functional spaces related\nto Maxwell-s equations. II. Hodge decompositions on the boundary\nof Lipschitz polyhedra and applications. Mathematical Methods in the\nApplied Sciences, 24, pp. 31-48, 2001.","A. Buffa, M. Costabel, and C. Schwab. Boundary element methods for\nMaxwell-s equations on non-smooth domains. Numerische Mathematik,\n92, pp. 679-710, 2002.","A. Buffa, M. Costabel, and D. Sheen. On traces for H(curl, ╬®) in\nLipschitz domains. Journal of Mathematical Analysis and Applications,\n276, pp. 845-867, 2002.","A. Buffa and R. Hiptmair. Galerkin boundary element methods for\nelectromagnetic scattering. Topics in computational wave propagation,\nvolume 31 of Lecture Notes in Computational Science and Engineering,\npp. 83-124. Springer, Berlin, 2003.\n[10] A. Buffa and R. Hiptmair. A coercive combined field integral equation\nfor electromagnetic scattering. SIAM Journal on Numerical Analysis, 42,\npp. 621-640 (electronic), 2004.\n[11] A. Buffa and R. Hiptmair. Regularized combined field integral equations.\nNumerische Mathematik, 100, pp. 1-19, 2005.\n[12] A. Buffa, R. Hiptmair, T. von Petersdorff, and C. Schwab. Boundary element\nmethods for Maxwell transmission problems in Lipschitz domains.\nNumerische Mathematik, 95, pp. 459-485, 2003.\n[13] M. Costabel. Boundary integral operators on Lipschitz domains: elementary\nresults. SIAM Journal on Mathematical Analysis, 19, pp. 613-626,\n1988.\n[14] V. Dolean, H. Fol, S. Lanteri, and R. Perrussel. Solution of the timeharmonic\nMaxwell equations using discontinuous Galerkin methods.\nJournal of Computational and Applied Mathematics, 218, pp. 435-445,\n2008.\n[15] S. Erichsen and S.A. Sauter. Efficient automatic quadrature in 3-d\nGalerkin BEM. Computer Methods in Applied Mechanics and Engineering,\n157, pp. 215-224, 1998. Seventh Conference on Numerical Methods\nand Computational Mechanics in Science and Engineering (NMCM 96)\n(Miskolc).\n[16] W. Hackbusch A sparse matrix arithmetic based on H-matrices. I. Introduction\nto H-matrices. Computing. Archives for Scientific Computing,\n62, pp. 89-108, 1999.\n[17] R. Hiptmair. Coupling of finite elements and boundary elements in\nelectromagnetic scattering. SIAM Journal on Numerical Analysis, 41, pp.\n919-944 (electronic), 2003.\n[18] R. Hiptmair and P. Meury. Stabilized FEM-BEM coupling for Helmholtz\ntransmission problems. SIAM Journal on Numerical Analysis, 44, pp.\n2107-2130 (electronic), 2006.\n[19] P. Houston, I. Perugia, A. Schneebeli, and D. Sch┬¿otzau. Interior penalty\nmethod for the indefinite time-harmonic Maxwell equations. Numerische\nMathematik, 100, pp. 485-518, 2005.\n[20] P. Houston, I. Perugia, A. Schneebeli, and D. Sch┬¿otzau. Mixed discontinuous\nGalerkin approximation of the Maxwell operator: the indefinite\ncase. M2AN. Mathematical Modelling and Numerical Analysis, 39, pp.\n727-753, 2005.\n[21] G.C. Hsiao, O. Steinbach, and W.L. Wendland. Domain decomposition\nmethods via boundary integral equations. Journal of Computational and\nApplied Mathematics, 125, pp. 521-537, 2000. Numerical analysis 2000,\nVol. VI, Ordinary differential equations and integral equations.\n[22] J.M. Hyman and M. Shashkov. Mimetic discretizations for Maxwell-s\nequations. Journal of Computational Physics, 151, pp. 881-909, 1999.\n[23] Y. Kuznetsov, K. Lipnikov, and M .Shashkov. The mimetic finite\ndifference method on polygonal meshes for diffusion-type problems.\nComputational Geosciences, 8, pp. 301-324, 2005.\n[24] K. Lipnikov, M. Shashkov, and D. Svyatskiy. The mimetic finite difference\ndiscretization of diffusion problem on unstructured polyhedral\nmeshes. Journal of Computational Physics, 211, pp. 473-491, 2006.\n[25] W. McLean. Strongly elliptic systems and boundary integral equations.\nCambridge University Press, Cambridge, 2000.\n[26] P. Monk. Finite element methods for Maxwell-s equations, Numerical\nMathematics and Scientific Computation. Oxford University Press, New\nYork, 2003.\n[27] O. Steinbach. Numerical approximation methods for elliptic boundary\nvalue problems. Finite and boundary elements. Springer, New York, 2008.\nTranslated from the 2003 German original."]}

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....90d924c9b7ad56f62cf5fc1945b18e35
Full Text :
https://doi.org/10.5281/zenodo.1076763