Back to Search Start Over

Partial force control of constrained floating-base robots

Authors :
Andrea Del Prete
Nicolas Mansard
Francesco Nori
Giorgio Metta
Lorenzo Natale
Équipe Mouvement des Systèmes Anthropomorphes (LAAS-GEPETTO)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Department of Robotics, Brain and Cognitive Sciences (RBCS)
Istituto Italiano di Tecnologia (IIT)
LIRA-lab
Universita degli studi di Genova
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Università degli studi di Genova = University of Genoa (UniGe)
Source :
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Sep 2014, Chicago, United States. pp.3227-3232, ⟨10.1109/IROS.2014.6943010⟩, IROS
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

Legged robots are typically in rigid contact with the environment at multiple locations, which add a degree of complexity to their control. We present a method to control the motion and a subset of the contact forces of a floating-base robot. We derive a new formulation of the lexicographic optimization problem typically arising in multitask motion/force control frameworks. The structure of the constraints of the problem (i.e. the dynamics of the robot) allows us to find a sparse analytical solution. This leads to an equivalent optimization with reduced computational complexity, comparable to inverse-dynamics based approaches. At the same time, our method preserves the flexibility of optimization based control frameworks. Simulations were carried out to achieve different multi-contact behaviors on a 23-degree-offreedom humanoid robot, validating the presented approach. A comparison with another state-of-the-art control technique with similar computational complexity shows the benefits of our controller, which can eliminate force/torque discontinuities.<br />Pre-print of paper presented at Intelligent Robots and Systems (IROS 2014), IEEE International Conference on, Chicago, USA, 2014

Details

Language :
English
Database :
OpenAIRE
Journal :
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), Sep 2014, Chicago, United States. pp.3227-3232, ⟨10.1109/IROS.2014.6943010⟩, IROS
Accession number :
edsair.doi.dedup.....90d222fa5ceae08373f88d004902049c