Back to Search
Start Over
Hyperkyphosis is not dependent on bone mass and quality in the mouse model of Marfan syndrome
- Source :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Publication Year :
- 2021
-
Abstract
- Marfan syndrome (MFS) is an autosomal dominant disease affecting cardiovascular, ocular and skeletal systems. It is caused by mutations in the fibrillin-1 (FBN1) gene, leading to structural defects of connective tissue and increased activation of TGF-β. Angiotensin II (ang-II) is involved in TGF-β activity and in bone mass regulation. Inhibition of TGF-β signaling by blockage of the ang-II receptor 1 (AT1R) via losartan administration leads to improvement of cardiovascular and pulmonary phenotypes, but has no effect on skeletal phenotype in the haploinsufficient mouse model of MFS mgR, suggesting a distinct mechanism of pathogenesis in the skeletal system. Here we characterized the skeletal phenotypes of the dominant-negative model for MFS mgΔlpn and tested the effect of inhibition of ang-II signaling in improving those phenotypes. As previously shown, heterozygous mice present hyperkyphosis, however we now show that only males also present osteopenia. Inhibition of ang-II production by ramipril minimized the kyphotic deformity, but had no effect on bone microstructure in male mutant animals. Histological analysis revealed increased thickness of the anterior longitudinal ligament (ALL) of the spine in mutant animals (25.8 ± 6.3 vs. 29.7 ± 7.7 μm), coupled with a reduction in type I (164.1 ± 8.7 vs. 139.0 ± 4.4) and increase in type III (86.5 ± 10.2 vs. 140.4 ± 5.6) collagen in the extracellular matrix of this ligament. In addition, we identified in the MFS mice alterations in the erector spinae muscles which presented thinner muscle fibers (1035.0 ± 420.6 vs. 655.6 ± 239.5 μm2) surrounded by increased area of connective tissue (58.17 ± 6.52 vs. 105.0 ± 44.54 μm2). Interestingly, these phenotypes were ameliorated by ramipril treatment. Our results reveal a sex-dependency of bone phenotype in MFS, where females do not present alterations in bone microstructure. More importantly, they indicate that hyperkyphosis is not a result of osteopenia in the MFS mouse model, and suggest that incompetent spine ligaments and muscles are responsible for the development of that phenotype.
- Subjects :
- Male
0301 basic medicine
Marfan syndrome
medicine.medical_specialty
Histology
Physiology
Fibrillin-1
Endocrinology, Diabetes and Metabolism
Connective tissue
030209 endocrinology & metabolism
Losartan
Marfan Syndrome
Extracellular matrix
Mice
03 medical and health sciences
0302 clinical medicine
Transforming Growth Factor beta
SISTEMA MUSCULOSQUELÉTICO
Internal medicine
medicine
Animals
Kyphosis
business.industry
Autosomal dominant trait
medicine.disease
Angiotensin II
Osteopenia
030104 developmental biology
medicine.anatomical_structure
Endocrinology
Ligament
Female
business
Haploinsufficiency
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
- Accession number :
- edsair.doi.dedup.....907e7097c5f475c580101f4c5e5eace5