Back to Search Start Over

Hyperkyphosis is not dependent on bone mass and quality in the mouse model of Marfan syndrome

Authors :
Dieter P. Reinhardt
Lygia da Veiga Pereira
Isabela Gerdes Gyuricza
Elisa Ito Kawahara
Renan B. Lemes
Cecilia H. A. Gouveia
Manuela Miranda-Rodrigues
Marilia Bianca Cruz Grecco Teixeira
Rodrigo Barbosa de Souza
Gustavo Fernandes
Bianca Neofiti-Papi
Luis Ernesto Farinha-Arcieri
Source :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Publication Year :
2021

Abstract

Marfan syndrome (MFS) is an autosomal dominant disease affecting cardiovascular, ocular and skeletal systems. It is caused by mutations in the fibrillin-1 (FBN1) gene, leading to structural defects of connective tissue and increased activation of TGF-β. Angiotensin II (ang-II) is involved in TGF-β activity and in bone mass regulation. Inhibition of TGF-β signaling by blockage of the ang-II receptor 1 (AT1R) via losartan administration leads to improvement of cardiovascular and pulmonary phenotypes, but has no effect on skeletal phenotype in the haploinsufficient mouse model of MFS mgR, suggesting a distinct mechanism of pathogenesis in the skeletal system. Here we characterized the skeletal phenotypes of the dominant-negative model for MFS mgΔlpn and tested the effect of inhibition of ang-II signaling in improving those phenotypes. As previously shown, heterozygous mice present hyperkyphosis, however we now show that only males also present osteopenia. Inhibition of ang-II production by ramipril minimized the kyphotic deformity, but had no effect on bone microstructure in male mutant animals. Histological analysis revealed increased thickness of the anterior longitudinal ligament (ALL) of the spine in mutant animals (25.8 ± 6.3 vs. 29.7 ± 7.7 μm), coupled with a reduction in type I (164.1 ± 8.7 vs. 139.0 ± 4.4) and increase in type III (86.5 ± 10.2 vs. 140.4 ± 5.6) collagen in the extracellular matrix of this ligament. In addition, we identified in the MFS mice alterations in the erector spinae muscles which presented thinner muscle fibers (1035.0 ± 420.6 vs. 655.6 ± 239.5 μm2) surrounded by increased area of connective tissue (58.17 ± 6.52 vs. 105.0 ± 44.54 μm2). Interestingly, these phenotypes were ameliorated by ramipril treatment. Our results reveal a sex-dependency of bone phenotype in MFS, where females do not present alterations in bone microstructure. More importantly, they indicate that hyperkyphosis is not a result of osteopenia in the MFS mouse model, and suggest that incompetent spine ligaments and muscles are responsible for the development of that phenotype.

Details

Database :
OpenAIRE
Journal :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Accession number :
edsair.doi.dedup.....907e7097c5f475c580101f4c5e5eace5