Back to Search Start Over

Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer

Authors :
Nikolaus Schultz
Michael H. Kagey
Heidi Heath
Ryan Brennan
Michael J. Morris
Jeffrey A. Schneider
David R. Wise
Bridget McLaughlin
Cynthia A. Sirard
Martin Fleisher
Angelo M. De Marzo
Michael R. Haas
Victor Ricardo Adorno Febles
Wassim Abida
Susan K. Logan
Karen S. Sfanos
Walter Newman
Steven M. Larson
Josef J. Fox
Joshua Armenia
Michael J. Garabedian
Michael C. Haffner
Yu Chen
Peter S. Nelson
Srinivasan Yegnasubramanian
Katie L. Thoren
Howard I. Scher
Charles L. Sawyers
Source :
JCO Precis Oncol
Publication Year :
2020
Publisher :
American Society of Clinical Oncology, 2020.

Abstract

PURPOSE Metastatic castration-resistant prostate cancer (mCRPC) with low androgen receptor (AR) and without neuroendocrine signaling, termed double-negative prostate cancer (DNPC), is increasingly prevalent in patients treated with AR signaling inhibitors and is in need of new biomarkers and therapeutic targets. METHODS Candidate genes enriched in DNPC were determined using differential gene expression analysis of discovery and validation cohorts of mCRPC biopsies. Laboratory studies were carried out in human mCRPC organoid cultures, prostate cancer (PCa) cell lines, and mouse xenograft models. Epigenetic studies were carried out in a rapid autopsy cohort. RESULTS Dickkopf-1 (DKK1) expression is increased in DNPC relative to prostate-specific antigen (PSA)–expressing mCRPC in the Stand Up to Cancer/Prostate Cancer Foundation discovery cohort (11.2 v 0.28 reads per kilobase per million mapped reads; q < 0.05; n = 117) and in the University of Washington/Fred Hutchinson Cancer Research Center cohort (9.2 v 0.99 fragments per kilobase of transcript per million mapped reads; P < .0001). DKK1 expression can be regulated by activated Wnt signaling in vitro and correlates with activating canonical Wnt signaling mutations and low PSA mRNA in mCRPC biopsies ( P < .05). DKK1 hypomethylation was associated with increased DKK1 mRNA expression (Pearson r = −0.66; P < .0001) in a rapid autopsy cohort (n = 7). DKK1-high mCRPC biopsies are infiltrated with significantly higher numbers of quiescent natural killer (NK) cells ( P < .005) and lower numbers of activated NK cells ( P < .0005). Growth inhibition of the human PCa model PC3 by the anti-DKK1 monoclonal antibody DKN-01 depends on the presence of NK cells in a severe combined immunodeficient xenograft mouse model. CONCLUSION These results support DKK1 as a contributor to the immunosuppressive tumor microenvironment of DNPC. These data have provided the rationale for a clinical trial targeting DKK1 in mCRPC (ClinicalTrials.gov identifier: NCT03837353 ).

Details

Language :
English
Database :
OpenAIRE
Journal :
JCO Precis Oncol
Accession number :
edsair.doi.dedup.....9074444e974f52d0edd4caa2245a5899