Back to Search
Start Over
Gaussian beam approach for the boundary value problem of high frequency Helmholtz equation
- Source :
- Commun. Math. Sci. 8, no. 4 (2010), 1041-1066
- Publication Year :
- 2010
- Publisher :
- International Press of Boston, 2010.
-
Abstract
- We propose an asymptotic numerical method called the Gaussian beam approach for the boundary value problem of high frequency Helmholtz equation. The basic idea is to ap- proximate the traveling waves with a summation of Gaussian beams by the least squares algorithm. Gaussian beams are asymptotic solutions of linear wave equations in the high frequency regime. We deduce the ODE systems satisfied by the Gaussian beams up to third order. The key ingredient of the proposed method is the construction of a finite-dimensional beam space which has a good approximating property. If the exact solutions of boundary value problems contain some strongly evanescent wave modes, the Gaussian beam approach might fail. To remedy this problem, we re- sort to the domain decomposition technique to separate the domain of definition into a boundary layer region and its complementary interior region. The former is handled by a domain-based dis- cretization method, and the latter by the Gaussian beam approach. Schwarz iterations should then be performed based on suitable transmission boundary conditions at the interface of two regions. Numerical tests demonstrate that the proposed method is very promising.
- Subjects :
- Helmholtz equation
Applied Mathematics
General Mathematics
Gaussian
Mathematical analysis
65N35
Domain decomposition methods
high frequency
Gaussian random field
Gaussian filter
Gaussian beam
symbols.namesake
domain decomposition
35J05
symbols
Gaussian function
Boundary value problem
Mathematics
least squares algorithm
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Commun. Math. Sci. 8, no. 4 (2010), 1041-1066
- Accession number :
- edsair.doi.dedup.....9050880d52b23b833e18fbb014a110c0