Back to Search Start Over

A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA

Authors :
Cathrine Broberg Vågbø
Arne Klungland
John Arne Dahl
P Tripathi
Hans E. Krokan
Adam B. Robertson
Source :
Nucleic Acids Research
Publication Year :
2011
Publisher :
Oxford University Press (OUP), 2011.

Abstract

Recently, 5-hydroxymethylcytosine (5hmC) was identified in mammalian genomic DNA. The biological role of this modification remains unclear; however, identifying the genomic location of this modified base will assist in elucidating its function. We describe a method for the rapid and inexpensive identification of genomic regions containing 5hmC. This method involves the selective glucosylation of 5hmC residues by the b-glucosyltransferase from T4 bacteriophage creating b-glucosyl-5-hydroxymethylcytosine (b-glu-5hmC). The b-glu-5hmC modification provides a target that can be efficiently and selectively pulled down by J-binding protein 1 coupled to magnetic beads. DNA that is precipitated is suitable for analysis by quantitative PCR, microarray or sequencing. Furthermore, we demonstrate that the J-binding protein 1 pull down assay identifies 5hmC at the promoters of developmentally regulated genes in human embryonic stem cells. The method described here will allow for a greater understanding of the temporal and spatial effects that 5hmC may have on epigenetic regulation at the single gene level. The Author(s) 2011. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Details

ISSN :
13624962 and 03051048
Volume :
39
Database :
OpenAIRE
Journal :
Nucleic Acids Research
Accession number :
edsair.doi.dedup.....8fdf52623d37154d506b8a32c3f05232
Full Text :
https://doi.org/10.1093/nar/gkr051