Back to Search Start Over

Quantum Dot Labeling and Visualization of Extracellular Vesicles

Authors :
Lucia Vojtech
Florian Hladik
Elizabeth Nance
Mengying Zhang
Ziming Ye
Source :
ACS Appl Nano Mater
Publication Year :
2020
Publisher :
American Chemical Society (ACS), 2020.

Abstract

Extracellular vesicles (EVs) are important mediators of intercellular communication. Their role in disease processes, uncovered mostly over the last two decades, makes them potential biomarkers, leading to a need to fundamentally understand EV biology. Direct visualization of EVs can provide insights into EV behavior, but current labeling techniques are often restricted by false-positive signals and rapid photobleaching. Hence, we developed a method of labeling EVs through conjugation with quantum dots (QDs)—high photoluminescent nanosized semi-conductors—using click chemistry. We showed that QD-EV conjugation could be tailored by altering QD to EV ratio or by using a catalyst. This conjugation chemistry was stable in a biological environment and upon storage for up to a week. Using size-exclusion chromatography, QD-EV conjugates could be separated from unconjugated QDs, enabling EV-specific signal detection. We demonstrate that these QD-EV conjugates can be live- and fixed-imaged in high resolution on cells and in tissue sheets, and the conjugates have better photostability compared with the commonly used EV dye DiI. We labeled two distinct EV populations: human semen EVs (sEVs) from fresh semen samples donated by healthy volunteers and brain EVs (bEVs) from excised rat brain tissues. We visualized QD-sEVs in epithelial sheets isolated from human vaginal mucosa and time-lapse imaged QD-bEV interactions with microglial BV-2 cells. The development of the QD-EV conjugate will benefit the study of EV localization, movement, and function and accelerate their potential use as biomarkers, therapeutic agents, or drug-delivery vehicles.

Details

ISSN :
25740970
Volume :
3
Database :
OpenAIRE
Journal :
ACS Applied Nano Materials
Accession number :
edsair.doi.dedup.....8fba4b81211aaad80a9e23a61339c51f