Back to Search
Start Over
Verification of the Major Metabolic Oxidation Path for the Naphthoyl Group in Chemoattractant Receptor-Homologous Molecule Expressed on Th2 Cells (CRTh2) Antagonist 2-(2-(1-Naphthoyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic Acid (Setipiprant/ACT-129968)
- Source :
- Journal of Medicinal Chemistry. 58:8011-8035
- Publication Year :
- 2015
- Publisher :
- American Chemical Society (ACS), 2015.
-
Abstract
- Various racemic and enantioenriched (trans)-X,Y-dihydroxy-X,Y-dihydronaphthoyl analogues as well as X-hydroxy-naphthoyl analogues of CRTh2 antagonist 2-(2-(1-naphthoyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid (1, Setipiprant/ACT-129968) were synthesized in order to gain insight into regio- and enantioselectivity of the metabolic oxidation of 1 and to verify the structures of four metabolites that were proposed earlier in a clinical ADME study. Analytical data of the synthetic standards were compared with data from samples of biological origin. The two major metabolites M7 and M9 were unambiguously verified as 2-(2-((trans)-3,4-dihydroxy-3,4-dihydronaphthalene-1-carbonyl)- and 2-(2-((trans)-5,6-dihydroxy-5,6-dihydronaphthalene-1-carbonyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid, respectively, each composed of two enantiomers with 68% and 44% ee in favor of (+)-(3S,4S)-M7 and (+)-(5S,6S)-M9, respectively. Likewise, minor metabolites M3 and M13 were identified as 2-(8-fluoro-2-(5-hydroxy-1-naphthoyl)- and 2-(8-fluoro-2-(4-hydroxy-1-naphthoyl)-1,2,3,4-tetrahydro-5H-pyrido[4,3-b]indol-5-yl)acetic acid, respectively.
- Subjects :
- Indoles
Chemoattractant Receptor
Stereochemistry
Chemistry
Receptors, Prostaglandin
Naphthalenes
Setipiprant
Acetic acid
chemistry.chemical_compound
Th2 Cells
Drug Discovery
Hepatocytes
Microsomes, Liver
Humans
Molecular Medicine
Molecule
Receptors, Immunologic
Enantiomer
Crth2 antagonist
Oxidation-Reduction
Biotransformation
Metabolic Networks and Pathways
Subjects
Details
- ISSN :
- 15204804 and 00222623
- Volume :
- 58
- Database :
- OpenAIRE
- Journal :
- Journal of Medicinal Chemistry
- Accession number :
- edsair.doi.dedup.....8faf421d02c34572cac89017ca1e4a78
- Full Text :
- https://doi.org/10.1021/acs.jmedchem.5b00824