Back to Search Start Over

The set of realizations of a max-plus linear sequence is semi-polyhedral

Authors :
Natacha Portier
Stéphane Gaubert
Vincent D. Blondel
Pôle en ingénierie mathématique (INMA)
Université Catholique de Louvain = Catholic University of Louvain (UCL)
Max-plus algebras and mathematics of decision (MAXPLUS)
Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de l'Informatique du Parallélisme (LIP)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Department of Computer Science [University of Toronto] (DCS)
University of Toronto
This work was partly supported by a grant Tournesol (Programme de coopération scientifique entre la France et la communauté Française de Belgique) and by the European Community Framework IV program through the research network ALAPEDES (``The Algebraic Approach to Performance Evaluation of Discrete Event Systems') and by European Community under contract PIOF-GA-2009-236197 of the 7th PCRD.
European Project: 236197,EC:FP7:PEOPLE,FP7-PEOPLE-IOF-2008,PACCAP(2009)
Centre National de la Recherche Scientifique (CNRS)-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École normale supérieure - Lyon (ENS Lyon)
Source :
Journal of Computer and System Sciences, Journal of Computer and System Sciences, 2011, 77 (4), pp.820-833. ⟨10.1016/j.jcss.2010.08.010⟩, Journal of Computer and System Sciences, Elsevier, 2011, 77 (4), pp.820-833. ⟨10.1016/j.jcss.2010.08.010⟩
Publication Year :
2011
Publisher :
Elsevier BV, 2011.

Abstract

International audience; We show that the set of realizations of a given dimension of a max-plus linear sequence is a finite union of polyhedral sets, which can be computed from any realization of the sequence. This yields an (expensive) algorithm to solve the max-plus minimal realization problem. These results are derived from general facts on rational expressions over idempotent commutative semirings: we show more generally that the set of values of the coefficients of a commutative rational expression in one letter that yield a given max-plus linear sequence is a semi-algebraic set in the max-plus sense. In particular, it is a finite union of polyhedral sets.

Details

ISSN :
00220000 and 10902724
Volume :
77
Database :
OpenAIRE
Journal :
Journal of Computer and System Sciences
Accession number :
edsair.doi.dedup.....8f9cd9cb1133617f049b8fd4c3769783
Full Text :
https://doi.org/10.1016/j.jcss.2010.08.010