Back to Search Start Over

New perspective on the fluorescence and sensing mechanism of TNP chemosensor 2-(4,5-bis(4-chlorophenyl)-1H-imidazol-2-yl)-4-chlorolphenol

Authors :
Yinhua Ma
Yanqiang Yang
Tian-Shu Chu
Jianyong Liu
Runze Liu
Source :
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 213:309-317
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

For TNP chemosensor 2-(4,5-Bis(4-Chlorophenyl)-1H-Imidazol-2-yl)-4-Chlorolphenol (HPICI), previous thought with no theoretical basis was that excited-state intramolecular proton transfer (ESIPT) process and the ground-state HPICI-TNP complex are mainly responsible for its fluorescence emission and the detection of TNP. However, this interpretation has been proved to be wrong by the present theoretical DFT/TDDFT explorations. Actually, the strong fluorescence of HPICI is mainly induced by the local excitation of the enol form HPICI(E) without ESIPT, and the fluorescence quenching by TNP is due to the photo-induced electron transfer (PET) process together with the cooperative effect of hydrogen-bonding interaction and π-π stacking interaction coexisting in the HPICI-TNP complex. The strengthened excited-state hydrogen bond promotes the PET process, thus facilitates the fluorescence quenching. This mechanism is proposed on the basis of the theoretical analyses on molecule geometry, binding energy, Gibbs free energy, electronic transitions, and frontier molecular orbitals (FMOs).

Details

ISSN :
13861425
Volume :
213
Database :
OpenAIRE
Journal :
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Accession number :
edsair.doi.dedup.....8f835318c3556ab8e2f19430b52a75a0