Back to Search
Start Over
Anticancer Effect of ERM210 on Liver Cancer Cells Through ROS/Mitochondria-dependent Apoptosis Signaling Pathways
- Source :
- In Vivo
- Publication Year :
- 2021
- Publisher :
- Anticancer Research USA Inc., 2021.
-
Abstract
- Background/aim Asian Traditional medicines are renowned for their antitumor properties and are efficacious in the clinical treatment of various cancer types. ERM210 is a Korean traditional medicine comprising nine types of medicinal plants. In the present study, we examined the pro-apoptotic effect and molecular mechanisms of the effects of ERM210 on HepG2 liver cancer cells. Materials and methods The cytotoxicity of ERM210 on HepG2 cells was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and wound-healing assays, and apoptosis and signaling pathways by fluorescence microscopy flow cytometry and western blotting. Results ERM210 significantly impaired HepG2 cell viability and enhanced mitochondria-dependent cellular apoptosis in a time- and dose-dependent manner by up-regulating the expression of caspases 3, 7 and 9, and of BCL2 apoptosis regulator (BCL2)-associated X, apoptosis regulator (BAX) proteins, whilst down-regulating that of BCL2 protein. Furthermore, ERM210 treatment increased accumulation of cellular and mitochondrial reactive oxygen species (ROS) and significantly inhibited cell migration. Additionally, all these phenomena were reversed by treating with the ROS scavenger N-acetylcysteine. The analysis of signaling proteins revealed that ERM210 significantly up-regulated the phosphorylation of ROS-dependent mitogen-activated protein kinases (p38, extracellular-regulated kinase, and c-Jun N-terminal kinase in HepG2 liver cancer cells. Conclusion ERM210 exerts anticancer effects in HepG2 liver cancer cells by up-regulating ROS/mitochondria-dependent apoptosis signaling, providing new insight into the possibility of employing this traditional medicine for the clinical treatment of liver cancer.
- Subjects :
- Membrane Potential, Mitochondrial
Pharmacology
chemistry.chemical_classification
Cancer Research
Reactive oxygen species
Chemistry
Kinase
Apoptosis Regulator
p38 mitogen-activated protein kinases
Liver Neoplasms
Cancer
Apoptosis
Hep G2 Cells
Mitochondrion
medicine.disease
General Biochemistry, Genetics and Molecular Biology
Mitochondria
medicine
Cancer research
Humans
Signal transduction
Reactive Oxygen Species
Research Article
Subjects
Details
- ISSN :
- 17917549 and 0258851X
- Volume :
- 35
- Database :
- OpenAIRE
- Journal :
- In Vivo
- Accession number :
- edsair.doi.dedup.....8f71edb241c49837c9c4a33e31ec1524
- Full Text :
- https://doi.org/10.21873/invivo.12542