Back to Search Start Over

Clouds and 'throat hit': Effects of liquid composition on nicotine emissions and physical characteristics of electronic cigarette aerosols

Authors :
Baassiri, Mohamad
Talih, Soha
Salman, Rola
Nareg Karaoghlanian
Rawad Saleh
Hage, Rachel El
Saliba, Najat
Shihadeh, Alan
Publication Year :
2017
Publisher :
Taylor & Francis, 2017.

Abstract

Electronic cigarettes (ECIGs) heat and vaporize a liquid mixture to produce an inhalable aerosol that can deliver nicotine to the user. The liquid mixture is typically composed of propylene glycol (PG) and vegetable glycerin (VG), in which are dissolved trace quantities of flavorants and, usually, nicotine. Due to their different chemical and thermodynamic properties, the proportions of PG and VG in the liquid solution may affect nicotine delivery and user sensory experience. In social media and popular culture, greater PG fraction is associated with greater “throat-hit,” a sensation that has been attributed in cigarette smokers to increased presence of vapor-phase nicotine. VG, on the other hand, is associated with thicker and larger exhaled “clouds.” In this study, we aim to investigate how PG/VG ratio influences variables that relate to nicotine delivery and plume visibility. Aerosols from varying PG/VG liquids were generated using a digitally controlled vaping instrument and a commercially available ECIG, and analyzed for nicotine content by GC-MS. Particle mass and number distribution were determined using a six-stage cascade impactor and a fast particle spectrometer (TSI EEPS), with tightly controlled dilution and sampling biases. A Mie theory model was used to compute the aerosol scattering coefficients in the visible spectrum. Decreasing the PG/VG ratio resulted in a decrease in total particulate matter (TPM) and nicotine yield (R2 > 0.9, p < .0001). Measured particle count median diameter ranged between 44 and 97nm, and was significantly smaller for PG liquids. Although the particle mass concentration was lower, aerosols produced using liquids that contained VG had an order of magnitude greater light scattering coefficients. These findings indicate that PG/VG ratio is a strong determinant of both nicotine delivery and user sensory experience. Copyright © 2017 American Association for Aerosol Research

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....8f4be1d5b3f8dc1c946a960a3b749bcb
Full Text :
https://doi.org/10.6084/m9.figshare.5100952