Back to Search
Start Over
Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software
- Source :
- Nature Methods. 3:533-539
- Publication Year :
- 2006
- Publisher :
- Springer Science and Business Media LLC, 2006.
-
Abstract
- Tandem mass spectrometry (MS/MS) allows for the rapid identification of many types of post-translational modifications (PTMs), especially those that can be detected by a diagnostic mass shift in one or more peptide fragment ions (for example, phosphorylation). But some PTMs (for example, SUMOs and other ubiquitin-like modifiers) themselves produce multiple fragment ions; combined with fragments from the modified target peptide, a complex overlapping fragmentation pattern is thus generated, which is uninterpretable by standard peptide sequencing software. Here we introduce SUMmOn, an automated pattern recognition tool that detects diagnostic PTM fragment ion series within complex MS/MS spectra, to identify modified peptides and modification sites within these peptides. Using SUMmOn, we demonstrate for the first time that human SUMO-1 multimerizes in vitro primarily via three N-terminal lysines, Lys7, Lys16 and Lys17. Notably, our method is theoretically applicable to any type of modification or chemical moiety generating a unique fragment ion pattern.
- Subjects :
- Molecular Sequence Data
Sequence alignment
Target peptide
Tandem mass spectrometry
Mass spectrometry
Biochemistry
Mass Spectrometry
Automation
Chemical Moiety
Fragmentation (mass spectrometry)
Small Ubiquitin-Related Modifier Proteins
Humans
Amino Acid Sequence
Molecular Biology
Peptide sequence
business.industry
Chemistry
Lysine
Pattern recognition
Cell Biology
Artificial intelligence
business
Protein Processing, Post-Translational
Sequence Alignment
Algorithms
Software
Biotechnology
Subjects
Details
- ISSN :
- 15487105 and 15487091
- Volume :
- 3
- Database :
- OpenAIRE
- Journal :
- Nature Methods
- Accession number :
- edsair.doi.dedup.....8f4989b816e0e8dcfc6f9eccb0409053
- Full Text :
- https://doi.org/10.1038/nmeth891