Back to Search Start Over

Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software

Authors :
Richard S. Rogers
Xiang Dong Zhang
Ruedi Aebersold
Michael J. Matunis
Patrick G. A. Pedrioli
John D. Aitchison
Brian Raught
Source :
Nature Methods. 3:533-539
Publication Year :
2006
Publisher :
Springer Science and Business Media LLC, 2006.

Abstract

Tandem mass spectrometry (MS/MS) allows for the rapid identification of many types of post-translational modifications (PTMs), especially those that can be detected by a diagnostic mass shift in one or more peptide fragment ions (for example, phosphorylation). But some PTMs (for example, SUMOs and other ubiquitin-like modifiers) themselves produce multiple fragment ions; combined with fragments from the modified target peptide, a complex overlapping fragmentation pattern is thus generated, which is uninterpretable by standard peptide sequencing software. Here we introduce SUMmOn, an automated pattern recognition tool that detects diagnostic PTM fragment ion series within complex MS/MS spectra, to identify modified peptides and modification sites within these peptides. Using SUMmOn, we demonstrate for the first time that human SUMO-1 multimerizes in vitro primarily via three N-terminal lysines, Lys7, Lys16 and Lys17. Notably, our method is theoretically applicable to any type of modification or chemical moiety generating a unique fragment ion pattern.

Details

ISSN :
15487105 and 15487091
Volume :
3
Database :
OpenAIRE
Journal :
Nature Methods
Accession number :
edsair.doi.dedup.....8f4989b816e0e8dcfc6f9eccb0409053
Full Text :
https://doi.org/10.1038/nmeth891