Back to Search Start Over

Evaluating the potential of KOH-modified composite biochar amendment to alleviate the ecotoxicity of perfluorooctanoic acid-contaminated sediment on Bellamya aeruginosa

Authors :
Taowu Ma
Ying Mi
Jing Xiang
Shuangjiao Gong
Benxiang Luo
Yingru Zhou
Source :
Ecotoxicology and Environmental Safety, Vol 219, Iss, Pp 112346-(2021)
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

Modified composite biochar offers a cost-effective solution for the remediation of contaminated sediments; however, few studies have evaluated the effects of modified composite biochar amendment on the ecotoxicity of contaminated sediment based on benthic macroinvertebrates. A 21-day sediment toxicity test was conducted using the freshwater snail Bellamya aeruginosa to examine the intrinsic ecotoxicity of a novel KOH-modified composite biochar (KOH-CBC) and its efficacy for reducing the bioavailability, uptake, and ecotoxicity of perfluorooctanoic acid (PFOA). It was found that KOH-CBC is toxic to B. aeruginosa, which may be attributed to its high polycyclic aromatic hydrocarbons (PAHs) content and alkalinity. The addition of KOH-CBC to PFOA-contaminated sediments can markedly reduce the bioavailability and uptake of PFOA by more than 90% and 50%, respectively, and subsequently alleviate the toxicity of PFOA to B. aeruginosa by at least 30%. Increasing the KOH-CBC dosage is not beneficial for further mitigating the toxicity of PFOA-contaminated sediments. Our findings imply that KOH-CBC is a promising sorbent for the in-situ remediation of PFOA-contaminated sediments. Application of acidified KOH-CBC at a dosage of approximately 1–3% will be sufficient to control the ecotoxicity of PFOA; however, its long-term environmental effects should be further validated.

Details

Language :
English
ISSN :
01476513
Volume :
219
Database :
OpenAIRE
Journal :
Ecotoxicology and Environmental Safety
Accession number :
edsair.doi.dedup.....8f3c2f6cad620cf203ed976126ba9d3b