Back to Search
Start Over
The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait
- Source :
- Scientific Reports, Scientific reports (Nature Publishing Group) 6 (2016). doi:10.1038/srep36376, info:cnr-pdr/source/autori:Droghei, R.; Falcini, F.; Casalbore, D.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L./titolo:The role of Internal Solitary Waves on deep-water sedimentary processes: The case of up-slope migrating sediment waves off the Messina Strait/doi:10.1038%2Fsrep36376/rivista:Scientific reports (Nature Publishing Group)/anno:2016/pagina_da:/pagina_a:/intervallo_pagine:/volume:6
- Publication Year :
- 2016
- Publisher :
- Nature Publishing Group, 2016.
-
Abstract
- Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.
- Subjects :
- water sediment
010504 meteorology & atmospheric sciences
sand waves: continental-slope
north-sea
ocean
dynamics
propagation
currents
model
010502 geochemistry & geophysics
01 natural sciences
Article
Sand wave
Continental margin
14. Life underwater
0105 earth and related environmental sciences
Canyon
geography
Multidisciplinary
geography.geographical_feature_category
Sediment
Geophysics
Refraction
Deep water
Shear (geology)
13. Climate action
solitary waves
Sedimentary rock
Sicily Strait
Geology
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 6
- Database :
- OpenAIRE
- Journal :
- Scientific Reports
- Accession number :
- edsair.doi.dedup.....8f38b8366c457830326be1ab28c19873