Back to Search
Start Over
Generative adversarial networks enhanced location privacy in 5G networks
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- 5G networks, as the up-to-date communication platforms, are experiencing fast booming. Meanwhile, increasing volumes of sensitive data, especially location information, are being generated and shared using 5G networks for various purposes ceaselessly. Location and trajectory information in the published data has always been and will keep courting risks and attacks by malicious adversaries. Therefore, there are still privacy leakage threats by simply sharing the original data, especially data with location information, due to the short cover range of 5G signal tower. To better address these issues, we proposed a generative adversarial networks (GAN) enhanced location privacy protection model to cloak the location and even trajectory information. We use posterior sampling to generate a subset of data, which is proved complying with differential privacy requirements from the end device side. After that, a data augmentation algorithm modified from classic GAN is devised to generate a series of privacy-preserving full-sized synthetic data from the central server side. With the synthetic data generated from a real-world dataset, we demonstrate the superiority of the proposed model in terms of location privacy protection, data utility, and prediction accuracy.
- Subjects :
- General Computer Science
Cover (telecommunications)
Computer science
SIGNAL (programming language)
Sampling (statistics)
Software Engineering
020207 software engineering
02 engineering and technology
computer.software_genre
Synthetic data
Range (mathematics)
0202 electrical engineering, electronic engineering, information engineering
Trajectory
Differential privacy
0804 Data Format, 0806 Information Systems, 0899 Other Information and Computing Sciences
Data mining
computer
5G
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....8ef8c3799ec7679ff406bbca2dc04c07