Back to Search Start Over

Fungal heavy metal adaptation through single nucleotide polymorphisms and copy-number variation

Authors :
Nhu H. Nguyen
Anna L. Bazzicalupo
Rytas Vilgalys
Jan V. Colpaert
Joske Ruytinx
Laura Coninx
Sara Branco
Yi-Hong Ke
Microbiology
Department of Bio-engineering Sciences
Source :
Molecular ecologyREFERENCES. 29(21)
Publication Year :
2019

Abstract

Human-altered environments can shape the evolution of organisms. Fungi are no exception, although little is known about how they withstand anthropogenic pollution. Here, we document adaptation in the mycorrhizal fungus Suillus luteus driven by soil heavy metal contamination. Genome scans across individuals from recently polluted and nearby unpolluted soils in Belgium revealed low divergence across isolates and no evidence of population structure based on soil type. However, we detected single nucleotide polymorphism divergence and gene copy-number variation, with different genetic combinations potentially conferring the ability to persist in contaminated soils. Variants were shared across the population but found to be under selection in isolates exposed to pollution and located across the genome, including in genes involved in metal exclusion, storage, immobilization and reactive oxygen species detoxification. Together, our results point to S. luteus undergoing the initial steps of adaptive divergence and contribute to understanding the processes underlying local adaptation under strong environmental selection.

Details

ISSN :
1365294X
Volume :
29
Issue :
21
Database :
OpenAIRE
Journal :
Molecular ecologyREFERENCES
Accession number :
edsair.doi.dedup.....8ee50de946330070db0abcf254431dfd