Back to Search Start Over

Efficient learning-based blur removal method based on sparse optimization for image restoration

Authors :
Chen Songmao
Xiuqin Su
Haoyuan Yang
Zhu Wenhua
Chunwu Ju
Source :
PLoS ONE, PLoS ONE, Vol 15, Iss 3, p e0230619 (2020)
Publication Year :
2020
Publisher :
Public Library of Science (PLoS), 2020.

Abstract

In imaging systems, image blurs are a major source of degradation. This paper proposes a parameter estimation technique for linear motion blur, defocus blur, and atmospheric turbulence blur, and a nonlinear deconvolution algorithm based on sparse representation. Most blur removal techniques use image priors to estimate the point spread function (PSF); however, many common forms of image priors are unable to exploit local image information fully. In this paper, the proposed method does not require models of image priors. Further, it is capable of estimating the PSF accurately from a single input image. First, a blur feature in the image gradient domain is introduced, which has a positive correlation with the degree of blur. Next, the parameters for each blur type are estimated by a learning-based method using a general regression neural network. Finally, image restoration is performed using a half-quadratic optimization algorithm. Evaluation tests confirmed that the proposed method outperforms other similar methods and is suitable for dealing with motion blur in real-life applications.

Details

ISSN :
19326203
Volume :
15
Database :
OpenAIRE
Journal :
PLOS ONE
Accession number :
edsair.doi.dedup.....8ed83547644253a2a610fcfe8f559d1b