Back to Search
Start Over
A Deep Learning Strategy for Vision-Based Evaluation on the Effect of Nanoparticles Exposure
- Source :
- IEEE International Symposium on Medical Measurements and Applications, roma Italia, 16/8/2018, info:cnr-pdr/source/autori:Mencattini A.; Casti P.; Di Giuseppe D.; Callari G.; Salmeri M.; Bertazzoni S.; Martinelli E.; Cricenti A.; Luce M.; Sammarco I.; Pietroiusti A.; Magrini A.; Lesci I.G.; Ferrucci L./congresso_nome:IEEE International Symposium on Medical Measurements and Applications/congresso_luogo:roma Italia/congresso_data:16%2F8%2F2018/anno:2018/pagina_da:/pagina_a:/intervallo_pagine, MeMeA
- Publication Year :
- 2018
-
Abstract
- Engineered nanomaterials play an even more relevant role in nanotechnology advances. However, care must be taken due to their suspected detrimental effects on human cells. Such alterations can be monitored through Atomic Force Microscopy (AFM) equipment and image digitalization. With the purpose to depict a metrological compliant scenario, a novel vision-based evaluation system is proposed with an evaluation unit based on a deep learning architecture. Inspired by the recent trends in trying to extend the standard concept of quantities to nominal properties and measurement to evaluation, we proposed here a platform for the evaluation of morphological alterations in AFM images of human cells exposed to different concentrations of carbon nanotubes. Results reveal the feasibility to automatically investigate such alterations with the aim to improve occupational medicine protocols and cells cataloguing procedures.
- Subjects :
- atomic force microscopy
Evaluation system
Vision based
Contextual image classification
Computer science
business.industry
Atomic force microscopy
Deep learning
020208 electrical & electronic engineering
Engineered nanomaterials
vision based evaluation
02 engineering and technology
010501 environmental sciences
deep learning architecture
Settore ING-INF/07
01 natural sciences
nominal properties
Human–computer interaction
0202 electrical engineering, electronic engineering, information engineering
Artificial intelligence
AFM
business
image classification
0105 earth and related environmental sciences
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- IEEE International Symposium on Medical Measurements and Applications, roma Italia, 16/8/2018, info:cnr-pdr/source/autori:Mencattini A.; Casti P.; Di Giuseppe D.; Callari G.; Salmeri M.; Bertazzoni S.; Martinelli E.; Cricenti A.; Luce M.; Sammarco I.; Pietroiusti A.; Magrini A.; Lesci I.G.; Ferrucci L./congresso_nome:IEEE International Symposium on Medical Measurements and Applications/congresso_luogo:roma Italia/congresso_data:16%2F8%2F2018/anno:2018/pagina_da:/pagina_a:/intervallo_pagine, MeMeA
- Accession number :
- edsair.doi.dedup.....8eb2c77833e03c85ee04ee6881650acf