Back to Search Start Over

Maximal regularity for semilinear non-autonomous evolution equations in temporally weighted spaces

Authors :
Tebbani Hossni
Achache Mahdi
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
CPT - E8 Dynamique quantique et analyse spectrale
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Source :
Arabian Journal of Mathematics, Arabian Journal of Mathematics, 2022, 11 (3), pp.539-547. ⟨10.1007/s40065-022-00390-0⟩
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

We consider the problem of maximal regularity for the semilinear non-autonomous evolution equations $$\begin{aligned} u'(t)+A(t)u(t)=F(t,u),\, t \text {-a.e.}, \, u(0)=u_0. \end{aligned}$$ u ′ ( t ) + A ( t ) u ( t ) = F ( t , u ) , t -a.e. , u ( 0 ) = u 0 . Here, the time-dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space $$\mathcal {H}.$$ H . We prove the maximal regularity result in temporally weighted $$L^2$$ L 2 -spaces and other regularity properties for the solution of the previous problem under minimal regularity assumptions on the forms, the initial value $$u_0$$ u 0 and the inhomogeneous term F. Our results are motivated by boundary value problems.

Details

ISSN :
21935351 and 21935343
Volume :
11
Database :
OpenAIRE
Journal :
Arabian Journal of Mathematics
Accession number :
edsair.doi.dedup.....8e580626c57e499e708465bfd00331e8
Full Text :
https://doi.org/10.1007/s40065-022-00390-0