Back to Search
Start Over
Maximal regularity for semilinear non-autonomous evolution equations in temporally weighted spaces
- Source :
- Arabian Journal of Mathematics, Arabian Journal of Mathematics, 2022, 11 (3), pp.539-547. ⟨10.1007/s40065-022-00390-0⟩
- Publication Year :
- 2022
- Publisher :
- Springer Science and Business Media LLC, 2022.
-
Abstract
- We consider the problem of maximal regularity for the semilinear non-autonomous evolution equations $$\begin{aligned} u'(t)+A(t)u(t)=F(t,u),\, t \text {-a.e.}, \, u(0)=u_0. \end{aligned}$$ u ′ ( t ) + A ( t ) u ( t ) = F ( t , u ) , t -a.e. , u ( 0 ) = u 0 . Here, the time-dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space $$\mathcal {H}.$$ H . We prove the maximal regularity result in temporally weighted $$L^2$$ L 2 -spaces and other regularity properties for the solution of the previous problem under minimal regularity assumptions on the forms, the initial value $$u_0$$ u 0 and the inhomogeneous term F. Our results are motivated by boundary value problems.
- Subjects :
- General Mathematics
[MATH]Mathematics [math]
Subjects
Details
- ISSN :
- 21935351 and 21935343
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Arabian Journal of Mathematics
- Accession number :
- edsair.doi.dedup.....8e580626c57e499e708465bfd00331e8
- Full Text :
- https://doi.org/10.1007/s40065-022-00390-0