Back to Search
Start Over
Multimodular fused acetyl–feruloyl esterases from soil and gut Bacteroidetes improve xylanase depolymerization of recalcitrant biomass
- Source :
- Biotechnology for Biofuels, Vol 13, Iss 1, Pp 1-14 (2020), Biotechnology for Biofuels
- Publication Year :
- 2020
- Publisher :
- BMC, 2020.
-
Abstract
- Background Plant biomass is an abundant and renewable carbon source that is recalcitrant towards both chemical and biochemical degradation. Xylan is the second most abundant polysaccharide in biomass after cellulose, and it possesses a variety of carbohydrate substitutions and non-carbohydrate decorations which can impede enzymatic degradation by glycoside hydrolases. Carbohydrate esterases are able to cleave the ester-linked decorations and thereby improve the accessibility of the xylan backbone to glycoside hydrolases, thus improving the degradation process. Enzymes comprising multiple catalytic glycoside hydrolase domains on the same polypeptide have previously been shown to exhibit intramolecular synergism during degradation of biomass. Similarly, natively fused carbohydrate esterase domains are encoded by certain bacteria, but whether these enzymes can result in similar synergistic boosts in biomass degradation has not previously been evaluated. Results Two carbohydrate esterases with similar architectures, each comprising two distinct physically linked catalytic domains from families 1 (CE1) and 6 (CE6), were selected from xylan-targeting polysaccharide utilization loci (PULs) encoded by the Bacteroidetes species Bacteroides ovatus and Flavobacterium johnsoniae. The full-length enzymes as well as the individual catalytic domains showed activity on a range of synthetic model substrates, corn cob biomass, and Japanese beechwood biomass, with predominant acetyl esterase activity for the N-terminal CE6 domains and feruloyl esterase activity for the C-terminal CE1 domains. Moreover, several of the enzyme constructs were able to substantially boost the performance of a commercially available xylanase on corn cob biomass (close to twofold) and Japanese beechwood biomass (up to 20-fold). Interestingly, a significant improvement in xylanase biomass degradation was observed following addition of the full-length multidomain enzyme from B. ovatus versus the addition of its two separated single domains, indicating an intramolecular synergy between the esterase domains. Despite high sequence similarities between the esterase domains from B. ovatus and F. johnsoniae, their addition to the xylanolytic reaction led to different degradation patterns. Conclusion We demonstrated that multidomain carbohydrate esterases, targeting the non-carbohydrate decorations on different xylan polysaccharides, can considerably facilitate glycoside hydrolase-mediated hydrolysis of xylan and xylan-rich biomass. Moreover, we demonstrated for the first time a synergistic effect between the two fused catalytic domains of a multidomain carbohydrate esterase.
- Subjects :
- 0106 biological sciences
Polysaccharide utilization locus
Acetyl xylan esterase
lcsh:Biotechnology
Biomass
Management, Monitoring, Policy and Law
Polysaccharide
01 natural sciences
Applied Microbiology and Biotechnology
Esterase
lcsh:Fuel
03 medical and health sciences
Hydrolysis
Xylan
Beech wood
lcsh:TP315-360
Feruloyl esterase
010608 biotechnology
lcsh:TP248.13-248.65
Glycoside hydrolase
030304 developmental biology
chemistry.chemical_classification
Carbohydrate-active enzyme
0303 health sciences
Carbohydrate esterase
Renewable Energy, Sustainability and the Environment
Research
food and beverages
General Energy
chemistry
Biochemistry
Multidomain enzymes
Xylanase
Corn cob
Biotechnology
Subjects
Details
- Language :
- English
- ISSN :
- 17546834
- Volume :
- 13
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Biotechnology for Biofuels
- Accession number :
- edsair.doi.dedup.....8dc412fc8fa213f262b9f2df375562ec