Back to Search Start Over

Sharp time decay estimates for the discrete Klein-Gordon equation

Authors :
Isroil A. Ikromov
Jean-Claude Cuenin
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

We establish sharp time decay estimates for the the Klein-Gordon equation on the cubic lattice in dimensions $d=2,3,4$. The $\ell^1\to\ell^{\infty}$ dispersive decay rate is $|t|^{-3/4}$ for $d=2$, $|t|^{-7/6}$ for $d=3$ and $|t|^{-3/2}\log|t|$ for $d=4$. These decay rates are faster than conjectured by Kevrekidis and Stefanov (2005). The proof relies on oscillatory integral estimates and proceeds by a detailed analysis of the the singularities of the associated phase function. We also prove new Strichartz estimates and discuss applications to nonlinear PDEs and spectral theory.<br />Comment: exposition improved, some tyops corrected

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....8d5922b700060f6e9996be3ed1fa82ef
Full Text :
https://doi.org/10.48550/arxiv.2011.12076