Back to Search Start Over

Biallelic TRAF3IP2 variants causing chronic mucocutaneous candidiasis in a child harboring a STAT1 variant

Authors :
Anne Puel
Jean-Laurent Casanova
Simon J. Pelham
Isabel Villaoslada
Paloma Guisado Hernández
Wei-Te Lei
Olaf Neth
Peter Olbrich
José Manuel Lucena
Beatriz de Felipe
Pilar Blanco Lobo
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2021
Publisher :
John Wiley & Sons, 2021.

Abstract

[Background] Inherited chronic mucocutaneous candidiasis (CMC) is often caused by inborn errors of immunity, impairing the response to, or the production of IL-17A and IL-17F. About half of the cases carry STAT1 gain-of-function (GOF) mutations. Only few patients have been reported with mutations of TRAF3IP2, a gene encoding the adaptor ACT1 essential for IL-17 receptor(R) signaling. We investigated a 10-year-old girl with CMC, carrying a heterozygous variant of STAT1 and compound heterozygous variants of TRAF3IP2.<br />[Methods] By flow cytometry, STAT1 levels and phosphorylation (CD14+) as well as IL-17A, IL-22, IFN-γ, and IL-4 production (memory CD4+ T cells) were determined. ACT1 expression and binding to IL-17RA were assessed by Western blot and co-immunoprecipitation in HEK-293T cells transfected with plasmids encoding wild-type or mutant HA-tagged ACT1 and Flag-IL-17RA. We evaluated IL-17A responses by measuring luciferase induction under a NF-κB-driven reporter system in HEK-293T cells and Gro-α secretion in fibroblasts. [Results] A STAT1 variant (c.1363G>A/p.V455I) was identified by next-generation sequencing and classified as likely non-pathogenic as functional testing revealed normal STAT1 expression and phosphorylation upon IFN-γ. We also found compound heterozygous variants (c.1325A>G/p.D451G and c.1335delA/p.K454fs11*) of TRAF3IP2. By overexpression, despite normal protein expression, and impaired (K454fs11*) or normal (D451G) interaction with IL-17RA, both mutant alleles resulted in impaired NF-κB activation. Patient's fibroblasts displayed abolished GRO-α secretion upon IL-17A stimulation. Finally, ex vivo CD4+ T cells showed increased IL-17A, IL-22, and IL-4 and normal low IFN-γ expression upon stimulation. [Conclusion] We identify novel compound heterozygous variants of TRAFP3IP2 causing autosomal recessive ACT1 deficiency in a child with CMC and provide a review of the current literature.

Details

Database :
OpenAIRE
Journal :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Accession number :
edsair.doi.dedup.....8c6df16bc3c2dd1b9f50e5568ca1f2fa