Back to Search Start Over

Assessment of a Markov logic model of crop rotations for early crop mapping

Authors :
Julien Osman
Jean-François Dejoux
Jordi Inglada
Centre d'études spatiales de la biosphère (CESBIO)
Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Source :
Computers and Electronics in Agriculture, Computers and Electronics in Agriculture, Elsevier, 2015, 113, pp.02.015. ⟨10.1016/j.compag.2015.02.015⟩, Computers and Electronics in Agriculture, 2015, 113, pp.02.015. ⟨10.1016/j.compag.2015.02.015⟩
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

A prediction model for crop rotations is proposed.The model uses machine learning techniques applied to historic data.It allows the introduction of expert knowledge without re-learning from data.The model is assessed on real data over several years and a large area. Detailed and timely information on crop area, production and yield is important for the assessment of environmental impacts of agriculture, for the monitoring of the land use and management practices, and for food security early warning systems. A machine learning approach is proposed to model crop rotations which can predict with good accuracy, at the beginning of the agricultural season, the crops most likely to be present in a given field using the crop sequence of the previous 3-5years. The approach is able to learn from data and to integrate expert knowledge represented as first-order logic rules. Its accuracy is assessed using the French Land Parcel Information System implemented in the frame of the EU's Common Agricultural Policy. This assessment is done using different settings in terms of temporal depth and spatial generalization coverage. The obtained results show that the proposed approach is able to predict the crop type of each field, before the beginning of the crop season, with an accuracy as high as 60%, which is better than the results obtained with current approaches based on remote sensing imagery.

Details

ISSN :
01681699
Volume :
113
Database :
OpenAIRE
Journal :
Computers and Electronics in Agriculture
Accession number :
edsair.doi.dedup.....8c65add3db6f4d0bcb9cca75d875df66
Full Text :
https://doi.org/10.1016/j.compag.2015.02.015