Back to Search Start Over

The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds

Authors :
Anna Maria Micheletti
Marco Ghimenti
Angela Pistoia
Source :
Discrete & Continuous Dynamical Systems - A. 34:2535-2560
Publication Year :
2014
Publisher :
American Institute of Mathematical Sciences (AIMS), 2014.

Abstract

Given a 3-dimensional Riemannian manifold $(M,g)$, we investigate the existence of positive solutions of the Klein-Gordon-Maxwell system $$ \left\{ \begin{array}{cc} -\varepsilon^{2}\Delta_{g}u+au=u^{p-1}+\omega^{2}(qv-1)^{2}u & \text{in }M\\ -\Delta_{g}v+(1+q^{2}u^{2})v=qu^{2} & \text{in }M \end{array}\right. $$ and Schrodinger-Maxwell system $$ \left\{ \begin{array}{cc} -\varepsilon^{2}\Delta_{g}u+u+\omega uv=u^{p-1} & \text{in }M\\ -\Delta_{g}v+v=qu^{2} & \text{in }M \end{array}\right. $$ when $p\in(2,6). $ We prove that if $\varepsilon$ is small enough, any stable critical point $\xi_0$ of the scalar curvature of $g$ generates a positive solution $(u_\varepsilon,v_\varepsilon)$ to both the systems such that $u_\varepsilon$ concentrates at $\xi_0$ as $\varepsilon$ goes to zero.

Details

ISSN :
15535231
Volume :
34
Database :
OpenAIRE
Journal :
Discrete & Continuous Dynamical Systems - A
Accession number :
edsair.doi.dedup.....8c41a5f4c6d67c20005155dc925e8c23
Full Text :
https://doi.org/10.3934/dcds.2014.34.2535