Back to Search
Start Over
The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds
- Source :
- Discrete & Continuous Dynamical Systems - A. 34:2535-2560
- Publication Year :
- 2014
- Publisher :
- American Institute of Mathematical Sciences (AIMS), 2014.
-
Abstract
- Given a 3-dimensional Riemannian manifold $(M,g)$, we investigate the existence of positive solutions of the Klein-Gordon-Maxwell system $$ \left\{ \begin{array}{cc} -\varepsilon^{2}\Delta_{g}u+au=u^{p-1}+\omega^{2}(qv-1)^{2}u & \text{in }M\\ -\Delta_{g}v+(1+q^{2}u^{2})v=qu^{2} & \text{in }M \end{array}\right. $$ and Schrodinger-Maxwell system $$ \left\{ \begin{array}{cc} -\varepsilon^{2}\Delta_{g}u+u+\omega uv=u^{p-1} & \text{in }M\\ -\Delta_{g}v+v=qu^{2} & \text{in }M \end{array}\right. $$ when $p\in(2,6). $ We prove that if $\varepsilon$ is small enough, any stable critical point $\xi_0$ of the scalar curvature of $g$ generates a positive solution $(u_\varepsilon,v_\varepsilon)$ to both the systems such that $u_\varepsilon$ concentrates at $\xi_0$ as $\varepsilon$ goes to zero.
- Subjects :
- Physics
lyapunov-schmidt reduction
Elliptic systems
Applied Mathematics
Zero (complex analysis)
FOS: Physical sciences
Mathematical Physics (math-ph)
Riemannian manifold
riemannian manifolds
Omega
scrhodinger-maxwell systems
Critical point (thermodynamics)
scalar curvature
Discrete Mathematics and Combinatorics
Mathematics::Differential Geometry
klein-gordon-maxwell systems
Mathematical Physics
Analysis
Scalar curvature
Mathematical physics
Lyapunov–Schmidt reduction
Subjects
Details
- ISSN :
- 15535231
- Volume :
- 34
- Database :
- OpenAIRE
- Journal :
- Discrete & Continuous Dynamical Systems - A
- Accession number :
- edsair.doi.dedup.....8c41a5f4c6d67c20005155dc925e8c23
- Full Text :
- https://doi.org/10.3934/dcds.2014.34.2535