Back to Search Start Over

An Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group

Authors :
Premika S. W. Boedhoe
Martijn W. Heymans
Lianne Schmaal
Yoshinari Abe
Pino Alonso
Stephanie H. Ameis
Alan Anticevic
Paul D. Arnold
Marcelo C. Batistuzzo
Francesco Benedetti
Jan C. Beucke
Irene Bollettini
Anushree Bose
Silvia Brem
Anna Calvo
Rosa Calvo
Yuqi Cheng
Kang Ik K. Cho
Valentina Ciullo
Sara Dallaspezia
Damiaan Denys
Jamie D. Feusner
Kate D. Fitzgerald
Jean-Paul Fouche
Egill A. Fridgeirsson
Patricia Gruner
Gregory L. Hanna
Derrek P. Hibar
Marcelo Q. Hoexter
Hao Hu
Chaim Huyser
Neda Jahanshad
Anthony James
Norbert Kathmann
Christian Kaufmann
Kathrin Koch
Jun Soo Kwon
Luisa Lazaro
Christine Lochner
Rachel Marsh
Ignacio Martínez-Zalacaín
David Mataix-Cols
José M. Menchón
Luciano Minuzzi
Astrid Morer
Takashi Nakamae
Tomohiro Nakao
Janardhanan C. Narayanaswamy
Seiji Nishida
Erika L. Nurmi
Joseph O'Neill
John Piacentini
Fabrizio Piras
Federica Piras
Y. C. Janardhan Reddy
Tim J. Reess
Yuki Sakai
Joao R. Sato
H. Blair Simpson
Noam Soreni
Carles Soriano-Mas
Gianfranco Spalletta
Michael C. Stevens
Philip R. Szeszko
David F. Tolin
Guido A. van Wingen
Ganesan Venkatasubramanian
Susanne Walitza
Zhen Wang
Je-Yeon Yun
ENIGMA-OCD Working-Group
Paul M. Thompson
Dan J. Stein
Odile A. van den Heuvel
Jos W. R. Twisk
Anatomy and neurosciences
Amsterdam Neuroscience - Compulsivity, Impulsivity & Attention
Psychiatry
Epidemiology and Data Science
APH - Personalized Medicine
APH - Methodology
APH - Health Behaviors & Chronic Diseases
ACS - Atherosclerosis & ischemic syndromes
Netherlands Institute for Neuroscience (NIN)
Boedhoe, Premika S W
Heymans, Martijn W
Schmaal, Lianne
Abe, Yoshinari
Alonso, Pino
Ameis, Stephanie H
Anticevic, Alan
Arnold, Paul D
Batistuzzo, Marcelo C
Benedetti, Francesco
Beucke, Jan C
Bollettini, Irene
Bose, Anushree
Brem, Silvia
Calvo, Anna
Calvo, Rosa
Cheng, Yuqi
Cho, Kang Ik K
Ciullo, Valentina
Dallaspezia, Sara
Denys, Damiaan
Feusner, Jamie D
Fitzgerald, Kate D
Fouche, Jean-Paul
Fridgeirsson, Egill A
Gruner, Patricia
Hanna, Gregory L
Hibar, Derrek P
Hoexter, Marcelo Q
Hu, Hao
Huyser, Chaim
Jahanshad, Neda
James, Anthony
Kathmann, Norbert
Kaufmann, Christian
Koch, Kathrin
Kwon, Jun Soo
Lazaro, Luisa
Lochner, Christine
Marsh, Rachel
Martínez-Zalacaín, Ignacio
Mataix-Cols, David
Menchón, José M
Minuzzi, Luciano
Morer, Astrid
Nakamae, Takashi
Nakao, Tomohiro
Narayanaswamy, Janardhanan C
Nishida, Seiji
Nurmi, Erika L
O'Neill, Joseph
Piacentini, John
Piras, Fabrizio
Piras, Federica
Reddy, Y C Janardhan
Reess, Tim J
Sakai, Yuki
Sato, Joao R
Simpson, H Blair
Soreni, Noam
Soriano-Mas, Carle
Spalletta, Gianfranco
Stevens, Michael C
Szeszko, Philip R
Tolin, David F
van Wingen, Guido A
Venkatasubramanian, Ganesan
Walitza, Susanne
Wang, Zhen
Yun, Je-Yeon
Thompson, Paul M
Stein, Dan J
van den Heuvel, Odile A
Twisk, Jos W R
Adult Psychiatry
Graduate School
Child Psychiatry
Source :
Frontiers in Neuroinformatics, Vol 12 (2019), Frontiers in Neuroinformatics, 12. Frontiers Media S.A., Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, Boedhoe, P S W, Heymans, M W, Schmaal, L, Abe, Y, Alonso, P, Ameis, S H, Anticevic, A, Arnold, P D, Batistuzzo, M C, Benedetti, F, Beucke, J C, Bollettini, I, Bose, A, Brem, S, Calvo, A, Calvo, R, Cheng, Y, Cho, K L K, Ciullo, V, Dallaspezia, S, Denys, D, Feusner, J D, Fitzgerald, K D, Fouches, J-P, Fridgeirsson, E A, Gruner, P, Henna, G L, Hibar, D P, Hoexter, M Q, Hu, H, Huyser, C, Jahanshad, N, James, A, Kathmann, N, Kaufmann, C, Koch, K, Kwon, J S, Lazaro, L, Lochner, C, Marsh, R, Martinez-Zalacain, I, Mataix-Cols, D, Menchon, J M, Minuzzi, L, Morer, A, Nakamae, T, Nakao, T, Narayanaswamy, J C, van den Heuvel, O A, Twisk, J W R, Nishida, S, Nurmi, E L, Stein, D J, Thompson, P M, Yun, J-Y, Wang, Z, Walitza, S, Venkatasubramanian, G, van Wingen, G A, Tolin, D F, Szeszko, P R, Stevens, M, Spalletta, G, Soriano-Mas, C, Soreni, N & ENIGMA OCD Working Group 2019, ' An empirical comparison of meta-and mega-analysis with data from the ENIGMA Obsessive-Compulsive Disorder working group ', Frontiers in Neuroinformatics, vol. 12 . https://doi.org/10.3389/fninf.2018.00102, Frontiers in Neuroinformatics, 12:102. Frontiers Media SA, Frontiers in Neuroinformatics, Frontiers in neuroinformatics, 12:102. Frontiers Media S.A.
Publication Year :
2019
Publisher :
Frontiers Media S.A., 2019.

Abstract

Objective: Brain imaging communities focusing on different diseases have increasingly started to collaborate and to pool data to perform well-powered meta- and mega-analyses. Some methodologists claim that a one-stage individual-participant data (IPD) mega-analysis can be superior to a two-stage aggregated data meta-analysis, since more detailed computations can be performed in a mega-analysis. Before definitive conclusions regarding the performance of either method can be drawn, it is necessary to critically evaluate the methodology of, and results obtained by, meta- and mega-analyses. Methods: Here, we compare the inverse variance weighted random-effect meta-analysis model with a multiple linear regression mega-analysis model, as well as with a linear mixed-effects random-intercept mega-analysis model, using data from 38 cohorts including 3,665 participants of the ENIGMA-OCD consortium. We assessed the effect sizes and standard errors, and the fit of the models, to evaluate the performance of the different methods. Results: The mega-analytical models showed lower standard errors and narrower confidence intervals than the meta-analysis. Similar standard errors and confidence intervals were found for the linear regression and linear mixed-effects random-intercept models. Moreover, the linear mixed-effects random-intercept models showed better fit indices compared to linear regression mega-analytical models. Conclusions: Our findings indicate that results obtained by meta- and mega-analysis differ, in favor of the latter. In multi-center studies with a moderate amount of variation between cohorts, a linear mixed-effects random-intercept mega-analytical framework appears to be the better approach to investigate structural neuroimaging data.

Details

Language :
English
ISSN :
16625196
Volume :
12
Database :
OpenAIRE
Journal :
Frontiers in Neuroinformatics
Accession number :
edsair.doi.dedup.....8c3d896084ad1c23f252848caed295c8
Full Text :
https://doi.org/10.3389/fninf.2018.00102/full