Back to Search Start Over

Confidential Truth Finding with Multi-Party Computation (Extended Version)

Authors :
Saadeh, Angelo
Senellart, Pierre
Bressan, Stéphane
CNRS@CREATE Ltd.
Laboratoire Traitement et Communication de l'Information (LTCI)
Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
Value from Data (VALDA )
Département d'informatique - ENS Paris (DI-ENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)
Institut Universitaire de France (IUF)
Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.)
Image & Pervasive Access Lab (IPAL)
National University of Singapore (NUS)-Agency for science, technology and research [Singapore] (A*STAR)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institute for Infocomm Research - I²R [Singapore]
School of computing [Singapore] (NUS)
National University of Singapore (NUS)
This research is part of the program DesCartes and issupported by the National Research Foundation, Prime Minister’s Office, Sin-gapore under its Campus for Research Excellence and Technological Enterprise(CREATE) program.
Publication Year :
2023
Publisher :
arXiv, 2023.

Abstract

Federated knowledge discovery and data mining are challenged to assess the trustworthiness of data originating from autonomous sources while protecting confidentiality and privacy. Truth-finding algorithms help corroborate data from disagreeing sources. For each query it receives, a truth-finding algorithm predicts a truth value of the answer, possibly updating the trustworthiness factor of each source. Few works, however, address the issues of confidentiality and privacy. We devise and present a secure secret-sharing-based multi-party computation protocol for pseudo-equality tests that are used in truth-finding algorithms to compute additions depending on a condition. The protocol guarantees confidentiality of the data and privacy of the sources. We also present variants of truth-finding algorithms that would make the computation faster when executed using secure multi-party computation. We empirically evaluate the performance of the proposed protocol on two state-of-the-art truth-finding algorithms, Cosine, and 3-Estimates, and compare them with that of the baseline plain algorithms. The results confirm that the secret-sharing-based secure multi-party algorithms are as accurate as the corresponding baselines but for proposed numerical approximations that significantly reduce the efficiency loss incurred.<br />Comment: 15-page extended version of a paper published at DEXA 2023

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....8c0c67d800958213e9c392bb55b1c54d
Full Text :
https://doi.org/10.48550/arxiv.2305.14727