Back to Search Start Over

Clinical encounter heterogeneity and methods for resolving in networked EHR data: a study from N3C and RECOVER programs

Authors :
Peter Leese
Adit Anand
Andrew Girvin
Amin Manna
Saaya Patel
Yun Jae Yoo
Rachel Wong
Melissa Haendel
Christopher G Chute
Tellen Bennett
Janos Hajagos
Emily Pfaff
Richard Moffitt
Source :
Journal of the American Medical Informatics Association. 30:1125-1136
Publication Year :
2023
Publisher :
Oxford University Press (OUP), 2023.

Abstract

Objective Clinical encounter data are heterogeneous and vary greatly from institution to institution. These problems of variance affect interpretability and usability of clinical encounter data for analysis. These problems are magnified when multisite electronic health record (EHR) data are networked together. This article presents a novel, generalizable method for resolving encounter heterogeneity for analysis by combining related atomic encounters into composite “macrovisits.” Materials and Methods Encounters were composed of data from 75 partner sites harmonized to a common data model as part of the NIH Researching COVID to Enhance Recovery Initiative, a project of the National Covid Cohort Collaborative. Summary statistics were computed for overall and site-level data to assess issues and identify modifications. Two algorithms were developed to refine atomic encounters into cleaner, analyzable longitudinal clinical visits. Results Atomic inpatient encounters data were found to be widely disparate between sites in terms of length-of-stay (LOS) and numbers of OMOP CDM measurements per encounter. After aggregating encounters to macrovisits, LOS and measurement variance decreased. A subsequent algorithm to identify hospitalized macrovisits further reduced data variability. Discussion Encounters are a complex and heterogeneous component of EHR data and native data issues are not addressed by existing methods. These types of complex and poorly studied issues contribute to the difficulty of deriving value from EHR data, and these types of foundational, large-scale explorations, and developments are necessary to realize the full potential of modern real-world data. Conclusion This article presents method developments to manipulate and resolve EHR encounter data issues in a generalizable way as a foundation for future research and analysis.

Subjects

Subjects :
Health Informatics

Details

ISSN :
1527974X and 10675027
Volume :
30
Database :
OpenAIRE
Journal :
Journal of the American Medical Informatics Association
Accession number :
edsair.doi.dedup.....8bfe08c64feb00c79cbbb9ea27ce7860