Back to Search
Start Over
The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism
- Source :
- Journal of immunology (Baltimore, Md. : 1950). 200(11)
- Publication Year :
- 2018
-
Abstract
- Monophosphoryl lipid A (MPLA) is a clinically used TLR4 agonist that has been found to drive nonspecific resistance to infection for up to 2 wk. However, the molecular mechanisms conferring protection are not well understood. In this study, we found that MPLA prompts resistance to infection, in part, by inducing a sustained and dynamic metabolic program in macrophages that supports improved pathogen clearance. Mice treated with MPLA had enhanced resistance to infection with Staphylococcus aureus and Candida albicans that was associated with augmented microbial clearance and organ protection. Tissue macrophages, which exhibited augmented phagocytosis and respiratory burst after MPLA treatment, were required for the beneficial effects of MPLA. Further analysis of the macrophage phenotype revealed that early TLR4-driven aerobic glycolysis was later coupled with mitochondrial biogenesis, enhanced malate shuttling, and increased mitochondrial ATP production. This metabolic program was initiated by overlapping and redundant contributions of MyD88- and TRIF-dependent signaling pathways as well as downstream mTOR activation. Blockade of mTOR signaling inhibited the development of the metabolic and functional macrophage phenotype and ablated MPLA-induced resistance to infection in vivo. Our findings reveal that MPLA drives macrophage metabolic reprogramming that evolves over a period of days to support a macrophage phenotype highly effective at mediating microbe clearance and that this results in nonspecific resistance to infection.
- Subjects :
- 0301 basic medicine
Male
Staphylococcus aureus
Phagocytosis
Immunology
Monophosphoryl Lipid A
Article
03 medical and health sciences
Mice
0302 clinical medicine
Adenosine Triphosphate
Candida albicans
Immunology and Allergy
Macrophage
Animals
PI3K/AKT/mTOR pathway
Chemistry
Macrophages
TOR Serine-Threonine Kinases
Candidiasis
Staphylococcal Infections
Respiratory burst
Cell biology
Mice, Inbred C57BL
Toll-Like Receptor 4
030104 developmental biology
Lipid A
Mitochondrial biogenesis
Anaerobic glycolysis
Myeloid Differentiation Factor 88
TLR4
Glycolysis
030215 immunology
Signal Transduction
Subjects
Details
- ISSN :
- 15506606
- Volume :
- 200
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- Journal of immunology (Baltimore, Md. : 1950)
- Accession number :
- edsair.doi.dedup.....8bc7a67b076cf7f7425e04253c963c96