Back to Search
Start Over
Tumor necrosis factor α inhibition overcomes immunosuppressive M2b macrophage-induced bevacizumab resistance in triple-negative breast cancer
- Source :
- Cell Death and Disease, Vol 11, Iss 11, Pp 1-13 (2020), Cell Death & Disease
- Publication Year :
- 2020
- Publisher :
- Nature Publishing Group, 2020.
-
Abstract
- Bevacizumab in neoadjuvant therapy provides a new hope of improved survival for patients with triple-negative breast cancer (TNBC) by targeting vascular endothelial growth factor in combination with chemotherapy, but curative effect is limited by bevacizumab’s continuous use while mechanisms remain incompletely understood. More and more researches reported that tumor-associated macrophages mediate resistance to chemotherapy and radiotherapy in various tumors. Here we developed a TNBC model resistant to bevacizumab under bevacizumab continuous administration. It was found that proportion of a specific subset of tumor-associated macrophages characterized as M2b (CD11b+ CD86high IL10high) increased and responsible for acquired resistance to bevacizumab. Then, we showed that RAW264.7 macrophages could be polarized to M2b subtype on simultaneous exposure to bevacizumab and TLR4 ligands as occurs in the context of continuous bevacizumab treatment. Concordantly, in TLR4-deleted C57BL/10ScNJNju (TLR4lps–del) mut/mut mice with bevacizumab treatment model, it was verified that the M2b macrophage could be induced by Fc gamma receptor-TLR4 cross-talk. In MDA-MB-231-resistant tumor-bearing mice, the content of TNFα in serum kept going up consistent with CCL1, a chemokine of M2b macrophage. In vitro neutralizing tumor necrosis factor α (TNFα) could inhibit the tumor progression caused by M2b culture medium and tumor IDO1 expression. Therefore, we thought that TNFα is a key tumor-promoting effector molecule secreted by M2b macrophage. Accordingly, the curative effect of bevacizumab was proved to be significantly improved by neutralizing TNFα with anti-TNFα nanobody. This study is expected to provide theoretical and clinical evidence elucidating the drug resistance in patients receiving bevacizumab.
- Subjects :
- Cancer Research
Bevacizumab
genetic structures
medicine.medical_treatment
Immunology
Context (language use)
Triple Negative Breast Neoplasms
Article
Cellular and Molecular Neuroscience
chemistry.chemical_compound
Mice
Antineoplastic Agents, Immunological
Breast cancer
Medicine
Animals
Humans
lcsh:QH573-671
Neoadjuvant therapy
Triple-negative breast cancer
Chemotherapy
business.industry
Tumor Necrosis Factor-alpha
lcsh:Cytology
Cell Biology
Vascular endothelial growth factor
Cancer therapeutic resistance
chemistry
Tumor progression
Cancer research
Tumor necrosis factor alpha
Female
business
medicine.drug
Subjects
Details
- Language :
- English
- ISSN :
- 20414889
- Volume :
- 11
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- Cell Death and Disease
- Accession number :
- edsair.doi.dedup.....8baa65df264331a006d9610dce8472e7
- Full Text :
- https://doi.org/10.1038/s41419-020-03161-x