Back to Search
Start Over
Signaling mechanisms inducing hyporesponsiveness of phagocytes during systemic inflammation
- Source :
- Blood. 134(2)
- Publication Year :
- 2019
-
Abstract
- The inflammatory responsiveness of phagocytes to exogenous and endogenous stimuli is tightly regulated. This regulation plays an important role in systemic inflammatory response syndromes (SIRSs). In SIRSs, phagocytes initially develop a hyperinflammatory response, followed by a secondary state of hyporesponsiveness, a so-called “tolerance.” This hyporesponsiveness can be induced by endotoxin stimulation of Toll-like receptor 4 (TLR4), resulting in an ameliorated response after subsequent restimulation. This modification of inflammatory response patterns has been described as innate immune memory. Interestingly, tolerance can also be triggered by endogenous TLR4 ligands, such as the alarmins myeloid-related protein 8 (MRP8, S100A8) and MRP14 (S100A9), under sterile conditions. However, signaling pathways that trigger hyporesponsiveness of phagocytes in clinically relevant diseases are only barely understood. Through our work, we have now identified 2 main signaling cascades that are activated during MRP-induced tolerance of phagocytes. We demonstrate that the phosphatidylinositol 3-kinase/AKT/GSK-3β pathway interferes with NF-κB–driven gene expression and that inhibition of GSK-3β mimics tolerance in vivo. Moreover, we identified interleukin-10–triggered activation of transcription factors STAT3 and BCL-3 as master regulators of MRP-induced tolerance. Accordingly, patients with dominant-negative STAT3 mutations show no tolerance development. In a clinically relevant condition of systemic sterile stress, cardiopulmonary bypass surgery, we confirmed the initial induction of MRP expression and the tolerance induction of monocytes associated with nuclear translocation of STAT3 and BCL-3 as relevant mechanisms. Our data indicate that the use of pharmacological JAK-STAT inhibitors may be promising targets for future therapeutic approaches to prevent complications associated with secondary hyporesponsiveness during SIRS.
- Subjects :
- 0301 basic medicine
Adult
Male
Immunology
Inflammation
Systemic inflammation
Biochemistry
03 medical and health sciences
Mice
Young Adult
0302 clinical medicine
medicine
Alarmins
Animals
Humans
Protein kinase B
Phagocytes
Innate immune system
Cardiopulmonary Bypass
business.industry
Cell Biology
Hematology
Middle Aged
Systemic Inflammatory Response Syndrome
Mice, Inbred C57BL
Interleukin 10
Tolerance induction
030104 developmental biology
030220 oncology & carcinogenesis
TLR4
Female
Signal transduction
medicine.symptom
business
Signal Transduction
Subjects
Details
- ISSN :
- 15280020
- Volume :
- 134
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Blood
- Accession number :
- edsair.doi.dedup.....8ba07a03727b79403165192cb552fcf6