Back to Search Start Over

Cleavage of 3′-terminal adenosine by archaeal ATP-dependent RNA ligase

Authors :
C. Kiong Ho
Shigeo Yoshinari
Paul Gollnick
Yancheng Liu
Source :
Scientific Reports, Vol 7, Iss 1, Pp 1-11 (2017), Scientific Reports
Publication Year :
2017
Publisher :
Nature Publishing Group, 2017.

Abstract

Methanothermobacter thermoautotrophicus RNA ligase (MthRnl) catalyzes formation of phosphodiester bonds between the 5′-phosphate and 3′-hydroxyl termini of single-stranded RNAs. It can also react with RNA with a 3′-phosphate end to generate a 2′,3′-cyclic phosphate. Here, we show that MthRnl can additionally remove adenosine from the 3′-terminus of the RNA to produce 3′-deadenylated RNA, RNA(3′-rA). This 3′-deadenylation activity is metal-dependent and requires a 2′-hydroxyl at both the terminal adenosine and the penultimate nucleoside. Residues that contact the ATP/AMP in the MthRnl crystal structures are essential for the 3′-deadenylation activity, suggesting that 3′-adenosine may occupy the ATP-binding pocket. The 3′-end of cleaved RNA(3′-rA) consists of 2′,3′-cyclic phosphate which protects RNA(3′-rA) from ligation and further deadenylation. These findings suggest that ATP-dependent RNA ligase may act on a specific set of 3′-adenylated RNAs to regulate their processing and downstream biological events.

Details

Language :
English
ISSN :
20452322
Volume :
7
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....8b9666b802450ea251304b489cf625f1
Full Text :
https://doi.org/10.1038/s41598-017-11693-0