Back to Search Start Over

Isolating lithologic versus tectonic signals of river profiles to test orogenic models for the Eastern and Southeastern Carpathians

Authors :
Gailleton, B.
Sinclair, H. D.
Mudd, S. M.
Graf, E. L. S.
Matenco, L. C.
Tectonics
Tectonics
Source :
Journal of Geophysical Research: Earth Surface, 126(8), 1. Wiley, Gailleton, B, Sinclair, H, Mudd, S, Graf, E & Matenco, L 2021, ' Isolating lithologic versus tectonic signals of river profiles to test orogenic models for the Eastern and Southeastern Carpathians ', Journal of Geophysical Research: Earth Surface, vol. 126, no. 8, e2020JF005970 . https://doi.org/10.1029/2020JF005970, Journal of Geophysical Research: Earth Surface
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

Fluvial morphology is affected by a wide range of forcing factors, which can be external, such as faulting and changes in climate, or internal, such as variations in rock hardness or degree of fracturing. It is a challenge to separate internal and external forcing factors when they are co-located or occur coevally. Failure to account for both factors leads to potential misinterpretations. For example, steepening of channel network due to lithologic contrasts could be misinterpreted to be a function of increased tectonic displacements. These misinterpretations are enhanced over large areas, where landscape properties needed to calculate channel steepness (e.g. channel concavity) can vary significantly in space. In this study, we investigate relative channel steepness over the Eastern Carpathians, where it has been proposed that active rock uplift in the Southeastern Carpathians gives way N- and NW-wards to ca. 8 Myrs of post-orogenic quiescence. We develop a technique to quantify relative channel steepness, the relative steepness index, based on a wide range of concavities, and show that the main signal shows an increase in relative steepness index from east to west across the range. Rock hardness measurements and geological studies suggest this difference is driven by lithology. When we isolate channel steepness by lithology to test for ongoing rock uplift along the range, we find steeper channels in the south of the study area compared to the same units in the North. This supports interpretations from longer timescale geological data that active rock uplift is fastest in the southern Southeastern Carpathians.

Details

ISSN :
21699003
Database :
OpenAIRE
Journal :
Journal of Geophysical Research: Earth Surface, 126(8), 1. Wiley, Gailleton, B, Sinclair, H, Mudd, S, Graf, E & Matenco, L 2021, ' Isolating lithologic versus tectonic signals of river profiles to test orogenic models for the Eastern and Southeastern Carpathians ', Journal of Geophysical Research: Earth Surface, vol. 126, no. 8, e2020JF005970 . https://doi.org/10.1029/2020JF005970, Journal of Geophysical Research: Earth Surface
Accession number :
edsair.doi.dedup.....8b635d55bec1a1b5d0b89b0159ee72da