Back to Search Start Over

Rotation-invariant features based on directional coding for texture classification

Authors :
Farida Ouslimani
A. Ouslimani
Zohra Ameur
Laboratoire Quartz ( Quartz )
Ecole Internationale des Sciences du Traitement de l'Information ( EISTI ) -Ecole Nationale Supérieure de l'Electronique et de ses Applications ( ENSEA ) -SUPMECA - Institut supérieur de mécanique de Paris
Laboratoire d'Analyse & Modélisation des Phénomènes Aléatoires [Tizi-Ouzou] ( LAMPA )
Université Mouloud Mammeri [Tizi Ouzou] ( UMMTO )
Laboratoire QUARTZ (QUARTZ )
Université Paris 8 Vincennes-Saint-Denis (UP8)-SUPMECA - Institut supérieur de mécanique de Paris-Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Ecole Internationale des Sciences du Traitement de l'Information (EISTI)
Laboratoire d'Analyse & Modélisation des Phénomènes Aléatoires [Tizi-Ouzou] (LAMPA)
Université Mouloud Mammeri [Tizi Ouzou] (UMMTO)
Université Paris 8 Vincennes-Saint-Denis (UP8)-SUPMECA - Institut supérieur de mécanique de Paris (SUPMECA)-Ecole Nationale Supérieure de l'Electronique et de ses Applications (ENSEA)-Ecole Internationale des Sciences du Traitement de l'Information (EISTI)
Source :
Neural Computing and Applications, Neural Computing and Applications, Springer Verlag, In press, 〈10.1007/s00521-018-3462-9〉, Neural Computing and Applications, Springer Verlag, In press, ⟨10.1007/s00521-018-3462-9⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

A directional coding (DC) method is proposed to extract rotation-invariant features for texture classification. DC uses four orientations in $$3\times 3$$ neighborhood pixel. For each orientation, the rank order of the central gray-level pixel is calculated. The four ranks are used to get 15 codes. The codes are combined with the information of the central pixel to extract 30 rotation-invariant features. For a multi-resolution study, DC is calculated by altering the window size around a central pixel. The number of samples is restricted to eight neighbors by local averaging. Therefore, in each single-scale DC histogram, the number of bins is kept small and constant. Outex, CUReT and KTH_TIPS2 databases are used to evaluate and compare the proposed method against some state-of-the-art local binary techniques and other texture analysis methods. The results obtained suggest that the proposed DC method outperforms other methods making it attractive for use in computer vision problems.

Details

Language :
English
ISSN :
09410643 and 14333058
Database :
OpenAIRE
Journal :
Neural Computing and Applications, Neural Computing and Applications, Springer Verlag, In press, 〈10.1007/s00521-018-3462-9〉, Neural Computing and Applications, Springer Verlag, In press, ⟨10.1007/s00521-018-3462-9⟩
Accession number :
edsair.doi.dedup.....8b4d272bc6ecb622996a307f4f1f5971
Full Text :
https://doi.org/10.1007/s00521-018-3462-9〉