Back to Search Start Over

Incremental rule learning and border examples selection from numerical data streams

Authors :
Ferrer-Troyano, Fj
Jesús S. Aguilar-Ruiz
Riquelme, Jc
Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos
Source :
Scopus-Elsevier, JUCS-Journal of Universal Computer Science 11(8): 1426-1439, idUS. Depósito de Investigación de la Universidad de Sevilla, instname, ResearcherID

Abstract

Mining data streams is a challenging task that requires online systems based on incremental learning approaches. This paper describes a classification system based on decision rules that may store up–to–date border examples to avoid unnecessary revisions when virtual drifts are present in data. Consistent rules classify new test examples by covering and inconsistent rules classify them by distance as the nearest neighbour algorithm. In addition, the system provides an implicit forgetting heuristic so that positive and negative examples are removed from a rule when they are not near one another.

Details

Database :
OpenAIRE
Journal :
Scopus-Elsevier, JUCS-Journal of Universal Computer Science 11(8): 1426-1439, idUS. Depósito de Investigación de la Universidad de Sevilla, instname, ResearcherID
Accession number :
edsair.doi.dedup.....8b35989d253b9417df3b9bddcd86c37b