Back to Search Start Over

Chromosomal aberrations in human lymphocytes exposed to the anticholinesterase pesticide isofenphos with mechanisms of leukemogenesis

Authors :
Shawna M Jackman
Robert D Williams
Laszlo G. Boros
Christopher J. Kolanko
Thomas R Eggers
Source :
Leukemia Research. 28:947-958
Publication Year :
2004
Publisher :
Elsevier BV, 2004.

Abstract

Human lymphocytes were exposed to the leukemogenic pesticide isofenphos (IFP) to investigate its effects on chromosomal DNA and cholinergic homeostasis using cholinesterase activity as a marker. Isolated peripheral lymphocytes were administered concentrations of IFP ranging from 0.1 ng/ml to 10 microg/ml. The absence (Group 1) and presence (Group 2) of DNA repair inhibitors 4 mM hydroxyurea (HU), 40 microM cytosine arabinoside (ARA-C) and an NADPH regenerating system (NRS) (Group 3) were analyzed at 1, 6 and 24 h by single cell gel electrophoresis using the comet assay. Significant damage to DNA directly from IFP at 1 h by remarkably low concentrations was observed in Group 1, escalating in Group 2 with DNA repair inhibition, while Group 3 disruptions were highest due to the presence of the NRS P-450 microsomal fraction conducive to producing reactive IFP-oxon and N-desalkyl metabolites. The extent of DNA aberrations increased further in parallel within the groups at 6 and 24 h. Male and female chemical sensitivities were similar on average (P < 0.01). Cholinesterase activity measured in a satellite group was inhibited with 0.1 microg/ml IFP by 69, 62, and 48% at 1, 6, and 24 h, respectively, indicating gradual induction of compensatory synthesis. Restoration of cholinergic homeostasis may be exceptionally impaired at higher IFP concentrations from acetyl-CoA depletion [Leuk. Res. 25 (2001) 883]. In summary, these studies reveal that exposure to the organophosphate pesticide isofenphos induces human DNA mutation beyond endogenous repair capacity and disrupts cholinergic nuclear signaling affectively constructing the mutator phenotype of leukemogenesis.

Details

ISSN :
01452126
Volume :
28
Database :
OpenAIRE
Journal :
Leukemia Research
Accession number :
edsair.doi.dedup.....8b28f7e54b11f31da570940fcb350699